From the Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), D-13125 Berlin, Germany.
Graduate Program, Faculty of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany.
J Biol Chem. 2018 Aug 31;293(35):13440-13451. doi: 10.1074/jbc.RA118.002853. Epub 2018 Jun 20.
Volume-regulated anion channels (VRACs) are crucial for cell volume regulation and have various roles in physiology and pathology. VRACs were recently discovered to be formed by heteromers of leucine-rich repeat-containing 8 (LRRC8) proteins. However, the structural determinants of VRAC permeation and gating remain largely unknown. We show here that the short stretch preceding the first LRRC8 transmembrane domain determines VRAC conductance, ion permeability, and inactivation gating. Substituted-cysteine accessibility studies revealed that several of the first 15 LRRC8 residues are functionally important and exposed to a hydrophilic environment. Substituting glutamate 6 with cysteine decreased the amplitudes of swelling-activated currents, strongly increased iodide-over-chloride permeability, and markedly shifted the voltage dependence of channel inactivation. Importantly, these effects were reversed by 2-sulfonatoethyl methanethiosulfonate, which restores the negative charge at this amino acid position. Cd-mediated blocking of in cysteine variants suggested that the LRRC8 N termini come close together in the multimeric channel complex and might form part of the pore. We propose a model in which the N termini of the LRRC8 subunits line the cytoplasmic portion of the VRAC pore, possibly by folding back into the ion permeation pathway.
容积调节阴离子通道(VRAC)对于细胞体积调节至关重要,在生理和病理中具有多种作用。最近发现,VRAC 是由富含亮氨酸重复序列的 8 号蛋白(LRRC8)的异源二聚体形成的。然而,VRAC 通透和门控的结构决定因素在很大程度上仍不清楚。我们在这里表明,第一个 LRRC8 跨膜域之前的短片段决定了 VRAC 的电导率、离子通透性和失活动力学。取代半胱氨酸可及性研究表明,前 15 个 LRRC8 残基中的几个具有重要的功能,并且暴露于亲水环境中。用半胱氨酸取代谷氨酸 6 会降低肿胀激活电流的幅度,强烈增加碘离子对氯离子的通透性,并显著改变通道失活动力学的电压依赖性。重要的是,这些效应可以通过 2-磺基乙基甲硫磺酸逆转,该物质恢复了该氨基酸位置的负电荷。半胱氨酸变异体中 Cd 介导的阻断表明,LRRC8 N 末端在多聚体通道复合物中彼此靠近,并且可能形成 VRAC 孔的一部分。我们提出了一个模型,其中 LRRC8 亚基的 N 末端排列在 VRAC 孔的细胞质部分,可能通过折叠回离子渗透途径。