Neuroscience Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom,
Lyon Neuroscience Research Center, CNRS UMR 5292-INSERM U1028-Université Claude Bernard, 69008 Lyon, France.
J Neurosci. 2018 Jul 25;38(30):6615-6627. doi: 10.1523/JNEUROSCI.0896-17.2018. Epub 2018 Jun 20.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and the current they generate contribute to the pathophysiological mechanisms of absence seizures (ASs), but their precise role in neocortical and thalamic neuronal populations, the main components of the network underlying AS generation, remains controversial. In diverse genetic AS models, amplitude is smaller in neocortical neurons and either larger or unchanged in thalamocortical (TC) neurons compared with nonepileptic strains. A lower expression of neocortical HCN subtype 1 channels is present in genetic AS-prone rats, and HCN subtype 2 knock-out mice exhibit ASs. Furthermore, whereas many studies have characterized contribution to "absence-like" paroxysmal activity , no data are available on the specific role of cortical and thalamic HCN channels in behavioral seizures. Here, we show that the pharmacological block of HCN channels with the antagonist ZD7288 applied via reverse microdialysis in the ventrobasal thalamus (VB) of freely moving male Genetic Absence Epilepsy Rats from Strasbourg decreases TC neuron firing and abolishes spontaneous ASs. A similar effect is observed on γ-hydroxybutyric acid-elicited ASs in normal male Wistar rats. Moreover, thalamic knockdown of HCN channels via virally delivered shRNA into the VB of male Stargazer mice, another genetic AS model, decreases spontaneous ASs and -dependent electrophysiological properties of VB TC neurons. These findings provide the first evidence that block of TC neuron HCN channels prevents ASs and suggest that any potential anti-absence therapy that targets HCN channels should carefully consider the opposite role for cortical and thalamic in the modulation of absence seizures. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play critical roles in the fine-tuning of cellular and network excitability and have been suggested to be a key element of the pathophysiological mechanism underlying absence seizures. However, the precise contribution of HCN channels in neocortical and thalamic neuronal populations to these nonconvulsive seizures is still controversial. In the present study, pharmacological block and genetic suppression of HCN channels in thalamocortical neurons in the ventrobasal thalamic nucleus leads to a marked reduction in absence seizures in one pharmacological and two genetic rodent models of absence seizures. These results provide the first evidence that block of TC neuron HCN channels prevents absence seizures.
超极化激活环核苷酸门控 (HCN) 通道及其产生的电流有助于失神发作 (AS) 的病理生理机制,但它们在作为 AS 产生基础的网络的主要组成部分的新皮层和丘脑神经元群体中的精确作用仍然存在争议。在不同的遗传性 AS 模型中,与非癫痫株相比,新皮层神经元的幅度较小,而丘脑皮质 (TC) 神经元的幅度较大或不变。遗传易患 AS 的大鼠中存在 HCN 亚型 1 通道表达降低,HCN 亚型 2 敲除小鼠表现出 AS。此外,尽管许多研究已经描述了 [1] 在“类似失神”阵发性活动中的贡献,但尚无关于皮质和丘脑 HCN 通道在行为性癫痫发作中的特定作用的数据。在这里,我们通过逆行微透析在自由移动的雄性 Strasbourg 遗传性失神癫痫大鼠的腹侧基底核 (VB) 中应用拮抗剂 ZD7288 显示,HCN 通道的药理学阻断可降低 TC 神经元的放电并消除自发性 AS。在正常雄性 Wistar 大鼠的 γ-羟基丁酸诱发的 AS 中也观察到类似的效果。此外,通过病毒传递的 shRNA 对雄性 Stargazer 小鼠的 VB 进行丘脑 HCN 通道敲低可降低自发性 AS 和 VB TC 神经元的电生理特性。这些发现首次提供了证据,证明 TC 神经元 HCN 通道的阻断可预防 AS,并表明任何针对 HCN 通道的潜在抗失神治疗都应仔细考虑皮质和丘脑在调节失神发作中的相反作用。超极化激活环核苷酸门控 (HCN) 通道在细胞和网络兴奋性的微调中发挥关键作用,并被认为是失神发作病理生理机制的关键因素。然而,HCN 通道在新皮层和丘脑神经元群体中对这些非惊厥性癫痫发作的确切贡献仍存在争议。在本研究中,在腹侧基底核的丘脑皮质神经元中进行 HCN 通道的药理学阻断和遗传抑制导致一种药理学和两种遗传性失神发作啮齿动物模型中的失神发作明显减少。这些结果首次提供了证据,证明 TC 神经元 HCN 通道的阻断可预防失神发作。