Ueberschär S, Bakker-Grunwald T
Biochim Biophys Acta. 1985 Aug 27;818(2):260-6. doi: 10.1016/0005-2736(85)90566-8.
As turkey erythrocytes were progressively depleted of ATP by preincubation with dinitrophenol, the (Na+ + K+ + 2Cl-)-cotransport system (assayed by the bumetanide-sensitive fraction of 86Rb+ influx) became less responsive to activation. The dependence upon intracellular ATP concentration was significantly steeper for transport activated by hypertonic shock (halfmaximal activity at 0.7 mM ATP) than for that activated by either epinephrine or cyclic AMP (halfmaximal activity at 1.7 mM ATP). Upon removal of epinephrine or cyclic AMP from cells that had been preincubated with those substances, bumetanide-sensitive transport activity declined sharply, even though the intracellular cyclic AMP concentration was still over 10-fold that required to maximally activate the transport system. These data are in agreement with the notion that the (Na+ + K+ + 2Cl-)-cotransport system in turkey erythrocytes is activated by cyclic AMP, presumably through the 'classical' pathway involving a protein kinase. They do however indicate that some other, as yet undefined aspect of cyclic AMP metabolism is important for the maintenance of transport activity.