Matsuura Ryutaro, Goto Sachiko, Sato Shuhei, Akagi Noriaki, Tahara Seiji
Graduate School of Health Sciences, Okayama University, Okayama 700-8558,
Acta Med Okayama. 2018 Jun;72(3):267-273. doi: 10.18926/AMO/56072.
We validated a navigator-echo-triggered sequence that drives magnetization before cardiac-gated inversion recovery T1 turbo field echo acquisition, in the sedated free-breathing pediatric population. Cardiac magnetic resonance imaging was performed on sedated infants with single ventricle. We calculated the signal-to-noise ratios and contrast-to-noise ratios of 2 groups of images obtained using respiratory triggering with and without navigator echo. All images were then visually assessed by 2 observers. The signal-to-noise ratio and the contrast-to-noise ratio were significantly higher with than without navigator echo (p<0.01; p<0.05). The visual assessment scores were also consistently better with than without navigator echo (p<0.01). Free-breathing navigator echo was found to have the advantage of decreasing the motion artifact caused by respiration. Cardiacgated inversion recovery T1 turbo field echo sequence for free-breathing navigator-echo-triggered respiration allows for the acquisition, in sedated infants, of diagnostic images whose quality exceeds that of the non-navigator-echo-triggered alternative.