Ciupe Stanca M, Miller Christopher J, Forde Jonathan E
Department of Mathematics, Virginia Tech, Blacksburg, VA, United States.
Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, Center for Comparative Medicine and California National Primate Research Center, University of California, Davis, Davis, CA, United States.
Front Microbiol. 2018 Jun 6;9:1216. doi: 10.3389/fmicb.2018.01216. eCollection 2018.
Experimental studies have shown that the size and infectious-stage of viral inoculum influence disease outcomes in rhesus macaques infected with simian immunodeficiency virus. The possible contribution to disease outcome of antibody developed after transmission and/or present in the inoculum in free or bound form is not understood. In this study, we develop a mathematical model of virus-antibody immune complex formation and use it to predict their role in transmission and protection. The model exhibits a bistable switch between clearance and persistence states. We fitted it to temporal virus data and estimated the parameter values for free virus infectivity rate and antibody carrying capacity for which the model transitions between virus clearance and persistence when the initial conditions (in particular the ratio of immune complexes to free virus) vary. We used these results to quantify the minimum virus amount in the inoculum needed to establish persistent infections in the presence and absence of protective antibodies.
实验研究表明,病毒接种物的大小和感染阶段会影响感染猴免疫缺陷病毒的恒河猴的疾病结局。传播后产生和/或以游离或结合形式存在于接种物中的抗体对疾病结局的可能影响尚不清楚。在本研究中,我们建立了病毒-抗体免疫复合物形成的数学模型,并利用该模型预测它们在传播和保护中的作用。该模型在清除状态和持续状态之间表现出双稳态转换。我们将其与随时间变化的病毒数据进行拟合,并估计了游离病毒感染率和抗体携带能力的参数值,当初始条件(特别是免疫复合物与游离病毒的比例)变化时,模型会在病毒清除和持续之间转换。我们利用这些结果来量化在有和没有保护性抗体的情况下,接种物中建立持续感染所需的最小病毒量。