Suppr超能文献

基于心电图并采用贝叶斯优化的心脏位置和方向重建

ECG-Based Reconstruction of Heart Position and Orientation with Bayesian Optimization.

作者信息

Coll-Font Jaume, Ariafar Setareh, Brooks Dana H

机构信息

SPIRAL Group, ECE Dept. Northeastern University, Boston (MA), USA.

出版信息

Comput Cardiol (2010). 2017 Sep;44. doi: 10.22489/CinC.2017.054-387. Epub 2018 Apr 5.

Abstract

Respiratory motion is known to cause beat-to-beat variation of the ECG. This observation suggests that it may be possible to use this variation to track position and orientation of the heart. Electrocardiographic Imaging (ECGI) would benefit from such a reconstruction since one contribution to errors in its solutions is respiratory motion of the heart. ECGI solutions generally rely on prior computation of a "forward" model that relates cardiac electrical activity to ECGs. However, the ill-posed nature of the inverse solution leads to large errors in ECGI even for small amounts of error in the forward model. The current work is a first step towards reducing those errors using a nominal forward model and the ECG itself. We describe a method that can reconstruct cardiac position / orientation using known potentials on both the heart and torso. Our current implementation is based on Bayesian Optimization and efficiently optimizes for the position / orientation of the heart to minimize error between measured and forward-computed torso potentials. We evaluated our approach with synthesized torso potentials under a model of respiratory motion and also using potentials recorded in a tank experiment on a canine epicardium and the tank surfaces. Our results show that our method performs accurately in synthetic experiments and can account for part of the error between forward-computed and measured ECGs in the tank experiments.

摘要

已知呼吸运动会导致心电图逐搏变化。这一观察结果表明,利用这种变化来追踪心脏的位置和方向或许是可行的。心电成像(ECGI)将受益于这样一种重建,因为其解决方案中的误差来源之一是心脏的呼吸运动。ECGI解决方案通常依赖于先计算一个将心脏电活动与心电图相关联的“正向”模型。然而,逆解的不适定性质即使在正向模型中存在少量误差时也会导致ECGI中出现较大误差。当前的工作是朝着使用标称正向模型和心电图本身来减少这些误差迈出的第一步。我们描述了一种可以利用心脏和躯干上的已知电位来重建心脏位置/方向的方法。我们当前的实现基于贝叶斯优化,并有效地针对心脏的位置/方向进行优化,以最小化测量的和正向计算的躯干电位之间的误差。我们在呼吸运动模型下用合成的躯干电位评估了我们的方法,并且还使用了在水槽实验中犬心外膜和水槽表面记录的电位进行评估。我们的结果表明,我们的方法在合成实验中表现准确,并且可以解释水槽实验中正向计算的和测量的心电图之间的部分误差。

相似文献

2
The electrocardiographic forward problem: A benchmark study.心电图正问题:基准研究。
Comput Biol Med. 2021 Jul;134:104476. doi: 10.1016/j.compbiomed.2021.104476. Epub 2021 May 15.
5
Improving Localization of Cardiac Geometry Using ECGI.使用心电图成像改善心脏几何形状的定位
Comput Cardiol (2010). 2020 Sep;47. doi: 10.22489/cinc.2020.273. Epub 2021 Feb 10.
7
Reconstruction of cardiac position using body surface potentials.利用体表电位重建心脏位置。
Comput Biol Med. 2022 Mar;142:105174. doi: 10.1016/j.compbiomed.2021.105174. Epub 2022 Jan 20.
8
In Vivo Validation of Electrocardiographic Imaging.体内心电图成像的验证。
JACC Clin Electrophysiol. 2017 Mar;3(3):232-242. doi: 10.1016/j.jacep.2016.11.012. Epub 2017 Feb 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验