Suppr超能文献

小 RNA 和核糖开关的合成生物学。

Synthetic Biology of Small RNAs and Riboswitches.

机构信息

Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712.

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720.

出版信息

Microbiol Spectr. 2018 May;6(3). doi: 10.1128/microbiolspec.RWR-0007-2017.

Abstract

In bacteria and archaea, small RNAs (sRNAs) regulate complex networks through antisense interactions with target mRNAs in trans, and riboswitches regulate gene expression in based on the ability to bind small-molecule ligands. Although our understanding and characterization of these two important regulatory RNA classes is far from complete, these RNA-based mechanisms have proven useful for a wide variety of synthetic biology applications. Besides classic and contemporary applications in the realm of metabolic engineering and orthogonal gene control, this review also covers newer applications of regulatory RNAs as biosensors, logic gates, and tools to determine RNA-RNA interactions. A separate section focuses on critical insights gained and challenges posed by fundamental studies of sRNAs and riboswitches that should aid future development of synthetic regulatory RNAs.

摘要

在细菌和古菌中,小 RNA(sRNA)通过与靶 mRNA 的反义相互作用在转录水平上调节复杂的网络,而核糖开关则根据结合小分子配体的能力来调节基因表达。尽管我们对这两种重要的调节 RNA 类别的理解和表征还远不完整,但这些基于 RNA 的机制已被证明对各种合成生物学应用非常有用。除了在代谢工程和正交基因控制领域的经典和当代应用外,本综述还涵盖了作为生物传感器、逻辑门和确定 RNA-RNA 相互作用的工具的调控 RNA 的较新应用。单独的一节重点介绍了对 sRNA 和核糖开关的基础研究中获得的关键见解和提出的挑战,这些见解和挑战应有助于未来合成调控 RNA 的发展。

相似文献

1
Synthetic Biology of Small RNAs and Riboswitches.
Microbiol Spectr. 2018 May;6(3). doi: 10.1128/microbiolspec.RWR-0007-2017.
2
Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology.
Appl Microbiol Biotechnol. 2014 Apr;98(8):3413-24. doi: 10.1007/s00253-014-5569-y. Epub 2014 Feb 12.
3
Small regulatory RNAs in Archaea.
RNA Biol. 2014;11(5):484-93. doi: 10.4161/rna.28452. Epub 2014 Mar 31.
4
RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.
RNA Biol. 2016;13(2):177-95. doi: 10.1080/15476286.2015.1110674.
6
Unexpected versatility in bacterial riboswitches.
Trends Genet. 2015 Mar;31(3):150-6. doi: 10.1016/j.tig.2015.01.005. Epub 2015 Feb 21.
8
Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile.
PLoS Genet. 2013 May;9(5):e1003493. doi: 10.1371/journal.pgen.1003493. Epub 2013 May 9.
9
Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression.
Microbiol Mol Biol Rev. 2016 Oct 26;80(4):1029-1057. doi: 10.1128/MMBR.00026-16. Print 2016 Dec.
10
Synthetic small regulatory RNAs in microbial metabolic engineering.
Appl Microbiol Biotechnol. 2021 Jan;105(1):1-12. doi: 10.1007/s00253-020-10971-8. Epub 2020 Nov 17.

引用本文的文献

2
Artificial dynamic structure ensemble-guided rational design of a universal RNA aptamer-based sensing tag.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2414793121. doi: 10.1073/pnas.2414793121. Epub 2024 Dec 20.
3
Development of an sRNA-mediated conditional knockdown system for .
mBio. 2025 Feb 5;16(2):e0254524. doi: 10.1128/mbio.02545-24. Epub 2024 Dec 13.
4
The riboswitch senses flavin mononucleotide within a defined transcriptional window.
RNA. 2024 Nov 18;30(12):1660-1673. doi: 10.1261/rna.080074.124.
5
Multiscale regulation of nutrient stress responses in from chromatin structure to small regulatory RNAs.
bioRxiv. 2024 Jun 24:2024.06.20.599902. doi: 10.1101/2024.06.20.599902.
6
Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs.
Nucleic Acids Res. 2024 Aug 12;52(14):8595-8608. doi: 10.1093/nar/gkae549.
7
Teaching old dogs new tricks: genetic engineering methanogens.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0224723. doi: 10.1128/aem.02247-23. Epub 2024 Jun 10.
8
CsrA selectively modulates sRNA-mRNA regulator outcomes.
Front Mol Biosci. 2023 Nov 21;10:1249528. doi: 10.3389/fmolb.2023.1249528. eCollection 2023.
9
Ribocentre-switch: a database of riboswitches.
Nucleic Acids Res. 2024 Jan 5;52(D1):D265-D272. doi: 10.1093/nar/gkad891.

本文引用的文献

1
Design rules of synthetic non-coding RNAs in bacteria.
Methods. 2018 Jul 1;143:58-69. doi: 10.1016/j.ymeth.2018.01.001. Epub 2018 Jan 5.
2
In Vivo Biochemistry: Single-Cell Dynamics of Cyclic Di-GMP in Escherichia coli in Response to Zinc Overload.
Biochemistry. 2018 Jan 9;57(1):108-116. doi: 10.1021/acs.biochem.7b00696. Epub 2017 Nov 2.
3
Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.
Nat Chem Biol. 2017 Nov;13(11):1172-1178. doi: 10.1038/nchembio.2476. Epub 2017 Sep 18.
4
Membrane association of the bacterial riboregulator Hfq and functional perspectives.
Sci Rep. 2017 Sep 6;7(1):10724. doi: 10.1038/s41598-017-11157-5.
5
A broad range quorum sensing inhibitor working through sRNA inhibition.
Sci Rep. 2017 Aug 29;7(1):9857. doi: 10.1038/s41598-017-09886-8.
6
Prediction of bacterial small RNAs in the RsmA (CsrA) and ToxT pathways: a machine learning approach.
BMC Genomics. 2017 Aug 22;18(1):645. doi: 10.1186/s12864-017-4057-z.
7
Controlling Bdellovibrio bacteriovorus Gene Expression and Predation Using Synthetic Riboswitches.
ACS Synth Biol. 2017 Nov 17;6(11):2035-2041. doi: 10.1021/acssynbio.7b00171. Epub 2017 Aug 18.
8
Rational Modular RNA Engineering Based on In Vivo Profiling of Structural Accessibility.
ACS Synth Biol. 2017 Dec 15;6(12):2228-2240. doi: 10.1021/acssynbio.7b00185. Epub 2017 Aug 10.
9
Complex cellular logic computation using ribocomputing devices.
Nature. 2017 Aug 3;548(7665):117-121. doi: 10.1038/nature23271. Epub 2017 Jul 26.
10
Small RNA mediated repression of subtilisin production in Bacillus licheniformis.
Sci Rep. 2017 Jul 18;7(1):5699. doi: 10.1038/s41598-017-05628-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验