利用可编程、多输入处理 CRISPR 向导 RNA 对内源性基因表达进行逻辑调控。
Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs.
机构信息
Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea.
出版信息
Nucleic Acids Res. 2024 Aug 12;52(14):8595-8608. doi: 10.1093/nar/gkae549.
The CRISPR-Cas system provides a versatile RNA-guided approach for a broad range of applications. Thanks to advances in RNA synthetic biology, the engineering of guide RNAs (gRNAs) has enabled the conditional control of the CRISPR-Cas system. However, achieving precise regulation of the CRISPR-Cas system for efficient modulation of internal metabolic processes remains challenging. In this work, we developed a robust dCas9 regulator with engineered conditional gRNAs to enable tight control of endogenous genes. Our conditional gRNAs in Escherichia coli can control gene expression upon specific interaction with trigger RNAs with a dynamic range as high as 130-fold, evaluating up to a three-input logic A OR (B AND C). The conditional gRNA-mediated targeting of endogenous metabolic genes, lacZ, malT and poxB, caused differential regulation of growth in Escherichia coli via metabolic flux control. Further, conditional gRNAs could regulate essential cytoskeleton genes, ftsZ and mreB, to control cell filamentation and division. Finally, three types of two-input logic gates could be applied for the conditional control of ftsZ regulation, resulting in morphological changes. The successful operation and application of conditional gRNAs based on programmable RNA interactions suggests that our system could be compatible with other Cas-effectors and implemented in other host organisms.
CRISPR-Cas 系统为广泛的应用提供了一种通用的 RNA 导向方法。得益于 RNA 合成生物学的进步,引导 RNA(gRNA)的工程设计使 CRISPR-Cas 系统的条件控制成为可能。然而,要实现 CRISPR-Cas 系统的精确调控,以有效调节内部代谢过程仍然具有挑战性。在这项工作中,我们开发了一种具有工程化条件 gRNA 的稳健 dCas9 调节剂,以实现对内源基因的紧密控制。我们在大肠杆菌中的条件 gRNA 可以在与触发 RNA 特异性相互作用时控制基因表达,动态范围高达 130 倍,评估多达三输入逻辑 A 或 (B 和 C)。通过代谢通量控制,条件 gRNA 介导的内源性代谢基因 lacZ、malT 和 poxB 的靶向作用导致大肠杆菌中生长的差异调节。此外,条件 gRNA 可以调节必需的细胞骨架基因 ftsZ 和 mreB,以控制细胞丝状化和分裂。最后,可以应用三种类型的双输入逻辑门来实现 ftsZ 调节的条件控制,从而导致形态变化。基于可编程 RNA 相互作用的条件 gRNA 的成功操作和应用表明,我们的系统可以与其他 Cas 效应子兼容,并在其他宿主生物中实现。