Suppr超能文献

使用改进的线性最小均方误差(LMMSE)估计器对三维多线圈磁共振成像进行去噪

De-noising of 3D multiple-coil MR images using modified LMMSE estimator.

作者信息

Yaghoobi Nima, Hasanzadeh Reza P R

机构信息

Department of Electrical Engineering, University of Guilan, Rasht, Iran.

Department of Electrical Engineering, University of Guilan, Rasht, Iran.

出版信息

Magn Reson Imaging. 2018 Oct;52:102-117. doi: 10.1016/j.mri.2018.06.014. Epub 2018 Jun 20.

Abstract

De-noising is a crucial topic in Magnetic Resonance Imaging (MRI) which focuses on less loss of Magnetic Resonance (MR) image information and details preservation during the noise suppression. Nowadays multiple-coil MRI system is preferred to single one due to its acceleration in the imaging process. Due to the fact that the model of noise in single-coil and multiple-coil MRI systems are different, the de-noising methods that mostly are adapted to single-coil MRI systems, do not work appropriately with multiple-coil one. The model of noise in single-coil MRI systems is Rician while in multiple-coil one (if no subsampling occurs in k-space or GRAPPA reconstruction process is being done in the coils), it obeys noncentral Chi (nc-χ). In this paper, a new filtering method based on the Linear Minimum Mean Square Error (LMMSE) estimator is proposed for multiple-coil MR Images ruined by nc-χ noise. In the presented method, to have an optimum similarity selection of voxels, the Bayesian Mean Square Error (BMSE) criterion is used and proved for nc-χ noise model and also a nonlocal voxel selection methodology is proposed for nc-χ distribution. The results illustrate robust and accurate performance compared to the related state-of-the-art methods, either on ideal nc-χ images or GRAPPA reconstructed ones.

摘要

去噪是磁共振成像(MRI)中的一个关键课题,其重点在于在噪声抑制过程中减少磁共振(MR)图像信息的损失并保留细节。如今,多线圈MRI系统因其在成像过程中的加速作用而比单线圈系统更受青睐。由于单线圈和多线圈MRI系统中的噪声模型不同,大多数适用于单线圈MRI系统的去噪方法在多线圈系统中并不适用。单线圈MRI系统中的噪声模型是莱斯分布,而在多线圈系统中(如果在k空间中没有子采样或者在线圈中正在进行GRAPPA重建过程),它服从非中心卡方分布(nc-χ)。本文针对受nc-χ噪声破坏的多线圈MR图像,提出了一种基于线性最小均方误差(LMMSE)估计器的新滤波方法。在所提出的方法中,为了实现体素的最优相似性选择,使用了贝叶斯均方误差(BMSE)准则并针对nc-χ噪声模型进行了证明,还针对nc-χ分布提出了一种非局部体素选择方法。结果表明,与相关的现有方法相比,无论是在理想的nc-χ图像还是GRAPPA重建的图像上,该方法都具有稳健且准确的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验