Suppr超能文献

基于 ZnO 纳米棒的生物相容性金属团聚增强拉曼测量中的局域表面等离子体共振(LSPR)效应。

Enhancement of local surface plasmon resonance (LSPR) effect by biocompatible metal clustering based on ZnO nanorods in Raman measurements.

机构信息

Biomedical Engineering Research Center, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.

Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, 23, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Nov 5;204:203-208. doi: 10.1016/j.saa.2018.06.045. Epub 2018 Jun 20.

Abstract

The development of size-selective and non-destructive detection techniques for nanosized biomarkers has many reasons, including the study of living cells and diagnostic applications. We present an approach for Raman signal enhancement on biocompatible sensing chips based on surface enhancement Raman spectroscopy (SERS). A sensing chip was fabricated by forming a ZnO-based nanorod structure so that the Raman enhancement occurred at a gap of several tens to several hundred nanometers. The effect of coffee-ring formation was eliminated by introducing the porous ZnO nanorods for the bio-liquid sample. A peculiarity of this approach is that the gold sputtered on the ZnO nanorods initially grows at their heads forming clusters, as confirmed by secondary electron microscopy. This clustering was verified by finite element analysis to be the main factor for enhancement of local surface plasmon resonance (LSPR). This clustering property and the ability to adjust the size of the nanorods enabled the signal acquisition points to be refined using confocal based Raman spectroscopy, which could be applied directly to the sensor chip based on the optimization process in this experiment. It was demonstrated by using common cancer cell lines that cell growth was high on these gold-clad ZnO nanorod-based surface-enhanced Raman substrates. The porosity of the sensing chip, the improved structure for signal enhancement, and the cell assay make these gold-coated ZnO nanorods substrates promising biosensing chips with excellent potential for detecting nanometric biomarkers secreted by cells.

摘要

发展用于纳米级生物标志物的尺寸选择性和非破坏性检测技术有很多原因,包括对活细胞的研究和诊断应用。我们提出了一种基于表面增强拉曼光谱(SERS)的生物相容性传感芯片上拉曼信号增强的方法。通过形成基于 ZnO 的纳米棒结构来制造传感芯片,使得拉曼增强发生在几十到几百纳米的间隙处。通过引入多孔 ZnO 纳米棒来消除咖啡环形成的影响,用于生物液体样品。这种方法的一个特点是,溅射在 ZnO 纳米棒上的金最初在其头部生长形成簇,这一点通过二次电子显微镜得到了证实。通过有限元分析证实,这种聚类是增强局域表面等离子体共振(LSPR)的主要因素。这种聚类特性和调整纳米棒尺寸的能力使基于共焦的拉曼光谱能够精细地采集信号,这可以直接应用于基于本实验优化过程的传感器芯片。通过使用常见的癌细胞系证明,在这些基于镀金 ZnO 纳米棒的表面增强拉曼衬底上细胞生长很高。传感芯片的多孔性、信号增强的改进结构和细胞分析使得这些镀金 ZnO 纳米棒衬底成为具有出色的检测细胞分泌的纳米级生物标志物的潜力的有前途的生物传感芯片。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验