Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology , Nanjing Normal University , Nanjing 210023 , China.
Physicochemical Group of College of Criminal Science and Technology , Nanjing Forest Police College , Nanjing 210023 , China.
Nano Lett. 2018 Jul 11;18(7):4424-4430. doi: 10.1021/acs.nanolett.8b01487. Epub 2018 Jun 26.
Triggered by the recent successful observation of previously predicted phonon chirality in the monolayer tungsten diselenide [ Science 2018 , 359 , 579 ], we systematically study the chiral phonons in the classical heterostructure of graphene/hexagonal boron nitride (G/ h-BN) by first-principles calculations. It is found that the broken inversion symmetry and the interlayer interaction of G/ h-BN not only open the phononic gaps but also lift the degeneracy of left-handed and right-handed chiral phonons at the first-Brillouin-zone corners (valleys). At valleys, the hybridization makes chiral phonon modes solely contributed from one individual layer. Moreover, we demonstrate that the vertical stress is effective to tune the degenerated phononic gap while keeping the valley-phonon chirality of G/ h-BN heterostructure, which is favorable for the Raman or ultrafast infrared spectroscopy measurement. We also analyze the pseudoangular momentum of valley-phonon modes, which provide important references for the excitation and measurement of the chiral phonons in the process of electronic intervalley scattering. Collectively, our results on the chiral phonons in the G/ h-BN heterostructure system could stimulate more experimental and theoretical studies and promote the future applications on the phonon-chirality-based phononics.
受单层二硒化钨中先前预测的声子手性的成功观测的启发[Science 2018, 359, 579],我们通过第一性原理计算系统地研究了石墨烯/六方氮化硼(G/h-BN)经典异质结构中的手性声子。结果表明,G/h-BN 的非中心对称和层间相互作用不仅打开了声子能隙,而且消除了第一布里渊区顶角(谷)处左旋和右旋手性声子的简并。在谷点处,杂化作用使得手性声子模式仅由一个单层贡献。此外,我们证明了垂直应力可以有效地调节简并声子能隙,同时保持 G/h-BN 异质结构的谷声子手性,这有利于拉曼或超快红外光谱测量。我们还分析了谷声子模式的赝角动量,为电子谷间散射过程中手性声子的激发和测量提供了重要参考。总之,我们对 G/h-BN 异质结构系统中手性声子的研究结果可以激发更多的实验和理论研究,并促进基于声子手性的声子学的未来应用。