Suppr超能文献

[多模态刺激下运动想象诱发脑电图特征调制的研究]

[Study on feature modulation of electroencephalogram induced by motor imagery under multi-modal stimulation].

作者信息

Zhao Li, Li Xiaoqin, Bian Yan, Wang Xuanfang, Yang Genghuang

机构信息

Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin University of Technology and Education, Tianjin 300222,

Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin University of Technology and Education, Tianjin 300222, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Jun 25;35(3):343-349. doi: 10.7507/1001-5515.201708061.

Abstract

Event-related desynchronization (ERD) is the basic feature of electroencephalogram (EEG), and the brain-computer interface based on motor imagery (MI-BCI) with the foundation of the analysis of ERD is of great significance in motor function recovery. The valid ERD characteristics extracted from EEG are the key to the performance of the BCI, so the study of which kind of stimulation mode can prompt subjects to generate more obvious characteristics of ERD is crucial. Four different stimulation modes are designed in this paper, and the effects of motion imagery tasks under static text stimulation, grip video stimulation, serial motion video stimulation of fingers as well as serial motion video stimulation of fingers with sound on the characteristics of ERD are analyzed. Combining the analysis of time-frequency spectrum, the power spectral density curve, ERD value and brain topographic map, it is shown that the ERD under serial motion video stimulation of fingers and serial motion video stimulation of fingers with sound modes is much stronger and has wider range of activation, and the BCI based on the analysis of ERD will have a better effect on practical application. As a result, the recognition and acceptance of the users of BCI system are improved in some extent.

摘要

事件相关去同步化(ERD)是脑电图(EEG)的基本特征,基于运动想象(MI-BCI)且以ERD分析为基础的脑机接口在运动功能恢复方面具有重要意义。从脑电图中提取有效的ERD特征是脑机接口性能的关键,因此研究哪种刺激模式能促使受试者产生更明显的ERD特征至关重要。本文设计了四种不同的刺激模式,并分析了静态文本刺激、抓握视频刺激、手指连续运动视频刺激以及带声音的手指连续运动视频刺激下的运动想象任务对ERD特征的影响。结合时频谱分析、功率谱密度曲线、ERD值和脑地形图,结果表明手指连续运动视频刺激模式和带声音的手指连续运动视频刺激模式下的ERD更强,激活范围更广,基于ERD分析的脑机接口在实际应用中会有更好的效果。结果,在一定程度上提高了脑机接口系统用户的认可度和接受度。

相似文献

1
[Study on feature modulation of electroencephalogram induced by motor imagery under multi-modal stimulation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Jun 25;35(3):343-349. doi: 10.7507/1001-5515.201708061.
2
5 Hz rTMS improves motor-imagery based BCI classification performance.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6116-6120. doi: 10.1109/EMBC46164.2021.9630102.
4
Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
Neuroimage. 2018 Dec;183:597-605. doi: 10.1016/j.neuroimage.2018.08.070. Epub 2018 Aug 30.
5
Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles.
J Neuroeng Rehabil. 2017 Aug 25;14(1):85. doi: 10.1186/s12984-017-0294-2.
7
Modulation of event-related desynchronization during kinematic and kinetic hand movements.
J Neuroeng Rehabil. 2014 May 30;11:90. doi: 10.1186/1743-0003-11-90.
8
Effect of instructive visual stimuli on neurofeedback training for motor imagery-based brain-computer interface.
Hum Mov Sci. 2015 Oct;43:239-49. doi: 10.1016/j.humov.2014.08.014. Epub 2014 Nov 13.
9
Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
J Neural Eng. 2017 Apr;14(2):026002. doi: 10.1088/1741-2552/aa5559. Epub 2016 Dec 22.
10
Motor imagery EEG classification based on ensemble support vector learning.
Comput Methods Programs Biomed. 2020 Sep;193:105464. doi: 10.1016/j.cmpb.2020.105464. Epub 2020 Mar 27.

引用本文的文献

1
Adaptive GCN and Bi-GRU-Based Dual Branch for Motor Imagery EEG Decoding.
Sensors (Basel). 2025 Feb 13;25(4):1147. doi: 10.3390/s25041147.

本文引用的文献

1
Frequency-specific modulation of connectivity in the ipsilateral sensorimotor cortex by different forms of movement initiation.
Neuroimage. 2017 Oct 1;159:248-260. doi: 10.1016/j.neuroimage.2017.07.054. Epub 2017 Jul 26.
2
Improving the discrimination of hand motor imagery via virtual reality based visual guidance.
Comput Methods Programs Biomed. 2016 Aug;132:63-74. doi: 10.1016/j.cmpb.2016.04.023. Epub 2016 Apr 27.
3
Improving motor imagery practice with synchronous action observation in stroke patients.
Top Stroke Rehabil. 2016 Aug;23(4):245-53. doi: 10.1080/10749357.2016.1141472. Epub 2016 Feb 17.
4
Importance of baseline in event-related desynchronization during a combination task of motor imagery and motor observation.
J Neural Eng. 2013 Apr;10(2):026009. doi: 10.1088/1741-2560/10/2/026009. Epub 2013 Feb 21.
5
Motor imagery ability in patients with traumatic brain injury.
Arch Phys Med Rehabil. 2012 May;93(5):828-33. doi: 10.1016/j.apmr.2011.11.018. Epub 2012 Feb 24.
6
Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery.
J Neural Eng. 2011 Jun;8(3):036005. doi: 10.1088/1741-2560/8/3/036005. Epub 2011 Apr 8.
8
Event-related desynchronization of sensorimotor EEG rhythms in hemiparetic patients with acute stroke.
Neurosci Lett. 2011 Jan 13;488(1):17-21. doi: 10.1016/j.neulet.2010.10.072. Epub 2010 Nov 5.
9
Chronic stroke recovery after combined BCI training and physiotherapy: a case report.
Psychophysiology. 2011 Apr;48(4):578-82. doi: 10.1111/j.1469-8986.2010.01117.x. Epub 2010 Aug 16.
10
Motor imagery and action observation: cognitive tools for rehabilitation.
J Neural Transm (Vienna). 2007;114(10):1265-78. doi: 10.1007/s00702-007-0763-z. Epub 2007 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验