Suppr超能文献

基于集成支持向量学习的运动想象脑电分类

Motor imagery EEG classification based on ensemble support vector learning.

作者信息

Luo Jing, Gao Xing, Zhu Xiaobei, Wang Bin, Lu Na, Wang Jie

机构信息

Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an Shaanxi, China.

Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi'an University of Technology, Xi'an Shaanxi, China.

出版信息

Comput Methods Programs Biomed. 2020 Sep;193:105464. doi: 10.1016/j.cmpb.2020.105464. Epub 2020 Mar 27.

Abstract

BACKGROUND AND OBJECTIVE

Brain-computer interfaces build a communication pathway from the human brain to a computer. Motor imagery-based electroencephalogram (EEG) classification is a widely applied paradigm in brain-computer interfaces. The common spatial pattern, based on the event-related desynchronization (ERD)/event-related synchronization (ERS) phenomenon, is one of the most popular algorithms for motor imagery-based EEG classification. Moreover, the spatiotemporal discrepancy feature based on the event-related potential phenomenon has been demonstrated to provide complementary information to ERD/ERS-based features. In this paper, aiming to improve the performance of motor imagery-based EEG classification in a few-channel situation, an ensemble support vector learning (ESVL)-based approach is proposed to combine the advantages of the ERD/ERS-based features and the event-related potential-based features in motor imagery-based EEG classification.

METHODS

ESVL is an ensemble learning algorithm based on support vector machine classifier. Specifically, the decision boundary with the largest interclass margin is obtained using the support vector machine algorithm, and the distances between sample points and the decision boundary are mapped to posterior probabilities. The probabilities obtained from different support vector machine classifiers are combined to make prediction. Thus, ESVL leverages the advantages of multiple trained support vector machine classifiers and makes a better prediction based on the posterior probabilities. The class discrepancy-guided sub-band-based common spatial pattern and the spatiotemporal discrepancy feature are applied to extract discriminative features, and then, the extracted features are used to train the ESVL classifier and make predictions.

RESULTS

The BCI Competition IV datasets 2a and 2b are employed to evaluate the performance of the proposed ESVL algorithm. Experimental comparisons with the state-of-the-art methods are performed, and the proposed ESVL-based approach achieves an average max kappa value of 0.60 and 0.71 on BCI Competition IV datasets 2a and 2b respectively. The results show that the proposed ESVL-based approach improves the performance of motor imagery-based brain-computer interfaces.

CONCLUSION

The proposed ESVL classifier could use the posterior probabilities to realize ensemble learning and the ESVL-based motor imagery classification approach takes advantage of the merits of ERD/ERS based feature and event-related potential based feature to improve the experimental performance.

摘要

背景与目的

脑机接口构建了一条从人脑到计算机的通信通路。基于运动想象的脑电图(EEG)分类是脑机接口中一种广泛应用的范式。基于事件相关去同步化(ERD)/事件相关同步化(ERS)现象的共同空间模式,是基于运动想象的EEG分类中最流行的算法之一。此外,基于事件相关电位现象的时空差异特征已被证明能为基于ERD/ERS的特征提供补充信息。本文旨在提高在少通道情况下基于运动想象的EEG分类性能,提出一种基于集成支持向量学习(ESVL)的方法,以结合基于ERD/ERS的特征和基于事件相关电位的特征在基于运动想象的EEG分类中的优势。

方法

ESVL是一种基于支持向量机分类器的集成学习算法。具体而言,使用支持向量机算法获得具有最大类间间隔的决策边界,并将样本点与决策边界之间的距离映射为后验概率。将不同支持向量机分类器获得的概率进行组合以进行预测。因此,ESVL利用了多个训练好的支持向量机分类器的优势,并基于后验概率做出更好的预测。应用类差异引导的基于子带的共同空间模式和时空差异特征来提取判别特征,然后,将提取的特征用于训练ESVL分类器并进行预测。

结果

使用脑机接口竞赛IV数据集2a和2b来评估所提出的ESVL算法的性能。与当前最先进的方法进行了实验比较,所提出的基于ESVL的方法在脑机接口竞赛IV数据集2a和2b上分别实现了平均最大kappa值0.60和0.71。结果表明,所提出的基于ESVL 的方法提高了基于运动想象的脑机接口的性能。

结论

所提出的ESVL分类器可以使用后验概率来实现集成学习,并且基于ESVL的运动想象分类方法利用了基于ERD/ERS的特征和基于事件相关电位的特征的优点来提高实验性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验