Suppr超能文献

树序或伞序下的最优阈值选择方法

Optimal threshold selection methods under tree or umbrella ordering.

作者信息

Wang Dan, Feng Yingdong, Attwood Kristopher, Tian Lili

机构信息

a TTx/Biomarker Statistics , Eli Lilly and Company, Lilly Corporate Center , Indianapolis , IN , USA.

b Department of Biostatistics , University at Buffalo , Buffalo , NY , USA.

出版信息

J Biopharm Stat. 2019;29(1):98-114. doi: 10.1080/10543406.2018.1489410. Epub 2018 Jun 25.

Abstract

Receiver operating characteristic (ROC) curve is a popular tool for evaluating diagnostic accuracy of biomarkers. In ROC framework, there exist several optimal threshold selection methods for binary classification. For diseases with multi-classes, an important category of scenarios is tree or umbrella ordering in which the marker measurement for one particular class is lower or higher than those for the rest classes. Tree or umbrella ordering has important clinical applications, especially in the molecular diagnostics of cancer subtypes. The ROC curve has been extended to a typical ROC framework for tree or umbrella ordering (denoted as TROC). In this paper, we investigate several methods for optimal threshold selection under tree or umbrella ordering. Simulation studies are carried out to explore the performance of these threshold selection methods. A real microarray data set on lung cancer is analyzed using the proposed methods.

摘要

受试者工作特征(ROC)曲线是评估生物标志物诊断准确性的常用工具。在ROC框架中,存在几种用于二分类的最优阈值选择方法。对于多类疾病,一类重要的情况是树状或伞状排序,即某一特定类别的标志物测量值低于或高于其他类别的测量值。树状或伞状排序具有重要的临床应用,特别是在癌症亚型的分子诊断中。ROC曲线已扩展到用于树状或伞状排序的典型ROC框架(表示为TROC)。在本文中,我们研究了在树状或伞状排序下的几种最优阈值选择方法。进行了模拟研究以探讨这些阈值选择方法的性能。使用所提出的方法分析了一个关于肺癌的真实微阵列数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验