Wang Dan, Feng Yingdong, Attwood Kristopher, Tian Lili
a TTx/Biomarker Statistics , Eli Lilly and Company, Lilly Corporate Center , Indianapolis , IN , USA.
b Department of Biostatistics , University at Buffalo , Buffalo , NY , USA.
J Biopharm Stat. 2019;29(1):98-114. doi: 10.1080/10543406.2018.1489410. Epub 2018 Jun 25.
Receiver operating characteristic (ROC) curve is a popular tool for evaluating diagnostic accuracy of biomarkers. In ROC framework, there exist several optimal threshold selection methods for binary classification. For diseases with multi-classes, an important category of scenarios is tree or umbrella ordering in which the marker measurement for one particular class is lower or higher than those for the rest classes. Tree or umbrella ordering has important clinical applications, especially in the molecular diagnostics of cancer subtypes. The ROC curve has been extended to a typical ROC framework for tree or umbrella ordering (denoted as TROC). In this paper, we investigate several methods for optimal threshold selection under tree or umbrella ordering. Simulation studies are carried out to explore the performance of these threshold selection methods. A real microarray data set on lung cancer is analyzed using the proposed methods.
受试者工作特征(ROC)曲线是评估生物标志物诊断准确性的常用工具。在ROC框架中,存在几种用于二分类的最优阈值选择方法。对于多类疾病,一类重要的情况是树状或伞状排序,即某一特定类别的标志物测量值低于或高于其他类别的测量值。树状或伞状排序具有重要的临床应用,特别是在癌症亚型的分子诊断中。ROC曲线已扩展到用于树状或伞状排序的典型ROC框架(表示为TROC)。在本文中,我们研究了在树状或伞状排序下的几种最优阈值选择方法。进行了模拟研究以探讨这些阈值选择方法的性能。使用所提出的方法分析了一个关于肺癌的真实微阵列数据集。