Suppr超能文献

微裂纹对长波长对称 Lamb 波的非线性影响。

Nonlinear effects of micro-cracks on long-wavelength symmetric Lamb waves.

机构信息

Fraunhofer IKTS, Maria-Reiche-Straße 2, D-01109 Dresden, Germany.

Fraunhofer IKTS, Maria-Reiche-Straße 2, D-01109 Dresden, Germany.

出版信息

Ultrasonics. 2018 Nov;90:98-108. doi: 10.1016/j.ultras.2018.06.001. Epub 2018 Jun 15.

Abstract

For an elastic medium containing a homogeneous distribution of micro-cracks, an effective one-dimensional stress-strain relation has been determined with finite element simulations. In addition to flat micro-cracks, voids were considered that contain a Hertzian contact, which represents an example for micro-cracks with internal structure. The orientation of both types of micro-cracks was fully aligned or, for flat micro-cracks, totally random. For micro-cracks with Hertzian contacts, the case of random orientation was treated in an approximate way. The two types of defects were found to give rise to different degrees of non-analytic behavior of the effective stress-strain relation, which governs the nonlinear propagation of symmetric (S0) Lamb waves in the long-wavelength limit. The presence of flat micro-cracks causes even harmonics to grow linearly with propagation distance with amplitudes proportional to the amplitude of the fundamental wave, and gives rise to a static strain. The presence of the second type of defects leads to a linear growth of all harmonics with amplitudes proportional to the power 3/2 of the fundamental amplitude, and to a strain-dependent velocity shift. Simple expressions are given for the growth rates of higher harmonics of S0 Lamb waves in terms of the parameters occurring in the effective stress-strain relation. They have partly been determined quantitatively with the help of the FEM results for different micro-crack concentrations.

摘要

对于含有均匀分布微裂纹的弹性介质,已经通过有限元模拟确定了有效的一维应力-应变关系。除了扁平微裂纹外,还考虑了包含赫兹接触的空隙,这代表了具有内部结构的微裂纹的一个例子。这两种类型的微裂纹的取向完全一致,或者对于扁平微裂纹来说,完全是随机的。对于具有赫兹接触的微裂纹,以近似的方式处理了随机取向的情况。这两种类型的缺陷导致有效应力-应变关系的非解析行为程度不同,这控制了对称(S0)兰姆波在长波极限下的非线性传播。扁平微裂纹的存在会导致偶数谐波随着传播距离线性增长,其幅度与基波幅度成正比,并产生静态应变。第二种类型缺陷的存在会导致所有谐波以与基波幅度的 3/2 次幂成正比的幅度线性增长,并导致与应变相关的速度偏移。给出了 S0 兰姆波高次谐波增长率的简单表达式,这些表达式与有效应力-应变关系中出现的参数有关。已经借助于不同微裂纹浓度的有限元结果对它们进行了部分定量确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验