Suppr超能文献

一项整群随机对照试验的研究方案,旨在评估老挝人民民主共和国维持高质量早期基本新生儿护理系统的有效性。

Study protocol of a cluster randomized controlled trial to evaluate effectiveness of a system for maintaining high-quality early essential newborn care in Lao PDR.

作者信息

Horiuchi Sayaka, Rattana Sommana, Saysanasongkham Bounnack, Kounnavongsa Outhevanh, Kubota Shogo, Cayrol Julie, Takahashi Kenzo, Inoue Mariko, Nemoto Asuka, Yamaoka Kazue

机构信息

Teikyo University Graduate School of Public Health, 2-11-1 Kaga, Itabashi, Tokyo, Japan.

Department of Health Care, Ministry of Health, Ban thatkhao, Sisattanack District, Rue Simeuang, Vientiane, Lao PDR.

出版信息

BMC Health Serv Res. 2018 Jun 25;18(1):489. doi: 10.1186/s12913-018-3311-7.

Abstract

BACKGROUND

Reduction in neonatal deaths has been a major challenge globally. To prevent neonatal deaths, improvements in newborn care have been promoted worldwide. The World Health Organization Western Pacific Regional Office has been promoting the Early Essential Newborn Care (EENC), a package of specific simple and cost-effective interventions, in their region. However, mere introduction of EENC cannot reduce neonatal deaths unless quality of care is ensured. In Lao PDR, the government introduced self-managed continuous monitoring as a sustainable way to improve the quality of care described in the EENC.

METHODS

A clustered randomized controlled trial was designed to compare the effectiveness of self-managed continuous monitoring with external supervisory visits to monitor health workers' satisfactory EENC performance and their knowledge and skills related to the EENC in Lao PDR. Determinants of EENC performance will be measured with a structured questionnaire developed based on the Theory of Planned Behaviour, which predicts future behaviour. During self-managed continuous monitoring activities, health workers in each district hospital will conduct periodical peer reviews and feedback sessions. Fifteen district hospitals will be randomly allocated into the self-managed continuous monitoring (intervention) and the supervision (control) groups. Fifteen health workers routinely involved in maternity and newborn care including physicians, midwives and other health staff will be recruited from each hospital (effect size 0.6, intra-cluster correlation coefficient 0.06, 5% alpha error and 80% power). We will compare the change in the mean score of the determinants before and one year after randomisation between the two groups. We will also compare the retention of knowledge and skills related to the EENC between the two groups. The expected enrolment period is July 20th, 2017 to July 20th, 2018.

DISCUSSION

This is the first cluster randomized trial to evaluate a self-managed continuous monitoring system for quality maintenance of newborn care in a resource-limited country. This research is conducted in collaboration with the Ministry of Health and international organizations; therefore, if effective, this intervention would be applied in larger areas of the country and the region.

TRIAL REGISTRATION

This trial was registered at UMIN-CTR on 15th of June, 2017. Registration number is UMIN000027794 .

摘要

背景

降低新生儿死亡率一直是全球面临的重大挑战。为预防新生儿死亡,全球范围内都在推动改善新生儿护理。世界卫生组织西太平洋区域办事处一直在其区域推广早期基本新生儿护理(EENC),这是一套具体、简单且具有成本效益的干预措施。然而,除非确保护理质量,仅仅引入EENC并不能降低新生儿死亡率。在老挝人民民主共和国,政府引入了自我管理的持续监测,作为提高EENC中所述护理质量的可持续方式。

方法

设计了一项整群随机对照试验,以比较自我管理的持续监测与外部监督访问在监测老挝人民民主共和国卫生工作者令人满意的EENC表现及其与EENC相关的知识和技能方面的有效性。EENC表现的决定因素将通过基于计划行为理论开发的结构化问卷进行测量,该理论可预测未来行为。在自我管理的持续监测活动期间,各地区医院的卫生工作者将定期进行同行评审和反馈会议。15家地区医院将被随机分配到自我管理的持续监测(干预)组和监督(对照)组。将从每家医院招募15名常规参与孕产妇和新生儿护理的卫生工作者,包括医生、助产士和其他卫生人员(效应大小0.6,组内相关系数0.06,α误差5%,检验效能80%)。我们将比较两组在随机分组前和随机分组一年后的决定因素平均得分变化。我们还将比较两组之间与EENC相关的知识和技能的保留情况。预计入组时间为2017年7月20日至2018年7月20日。

讨论

这是第一项在资源有限国家评估用于维持新生儿护理质量的自我管理持续监测系统的整群随机试验。本研究是与卫生部和国际组织合作进行的;因此,如果有效,这项干预措施将在该国和该地区的更大范围内应用。

试验注册

本试验于2017年6月15日在UMIN-CTR注册。注册号为UMIN000027794 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8fc/6019299/f296d5e21009/12913_2018_3311_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验