Suppr超能文献

抗结核药物贝达喹啉的离子载体效应。

Ionophoric effects of the antitubercular drug bedaquiline.

机构信息

Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, 9054 Dunedin, New Zealand.

Department of Biotechnology, Delft University of Technology, 2629 HZ Delft, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7326-7331. doi: 10.1073/pnas.1803723115. Epub 2018 Jun 25.

Abstract

Bedaquiline (BDQ), an inhibitor of the mycobacterial FF-ATP synthase, has revolutionized the antitubercular drug discovery program by defining energy metabolism as a potent new target space. Several studies have recently suggested that BDQ ultimately causes mycobacterial cell death through a phenomenon known as uncoupling. The biochemical basis underlying this, in BDQ, is unresolved and may represent a new pathway to the development of effective therapeutics. In this communication, we demonstrate that BDQ can inhibit ATP synthesis in by functioning as a H/K ionophore, causing transmembrane pH and potassium gradients to be equilibrated. Despite the apparent lack of a BDQ-binding site, incorporating the F subunit into liposomes enhanced the ionophoric activity of BDQ. We discuss the possibility that localization of BDQ at FF-ATP synthases enables BDQ to create an uncoupled microenvironment, by antiporting H/K Ionophoric properties may be desirable in high-affinity antimicrobials targeting integral membrane proteins.

摘要

贝达喹啉(BDQ)是一种分枝杆菌 FF-ATP 合酶抑制剂,它通过将能量代谢定义为一个强大的新靶标空间,彻底改变了抗结核药物的发现计划。最近有几项研究表明,BDQ 最终通过一种称为解偶联的现象导致分枝杆菌细胞死亡。BDQ 中这种现象的生化基础尚未解决,这可能代表着开发有效治疗方法的新途径。在本通讯中,我们证明 BDQ 可以通过充当 H/K 离子载体来抑制 的 ATP 合成,导致跨膜 pH 和钾梯度平衡。尽管明显缺乏 BDQ 结合位点,但将 F 亚基掺入脂质体中增强了 BDQ 的离子载体活性。我们讨论了这样一种可能性,即 BDQ 在 FF-ATP 合酶上的定位使 BDQ 能够在解偶联的微环境中发挥作用,通过反转运 H/K 离子载体特性可能是针对整合膜蛋白的高亲和力抗菌药物所需要的。

相似文献

1
Ionophoric effects of the antitubercular drug bedaquiline.
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7326-7331. doi: 10.1073/pnas.1803723115. Epub 2018 Jun 25.
4
TBAJ-876 Retains Bedaquiline's Activity against Subunits c and ε of F-ATP Synthase.
Antimicrob Agents Chemother. 2019 Sep 23;63(10). doi: 10.1128/AAC.01191-19. Print 2019 Oct.
5
Targeting bacterial energetics to produce new antimicrobials.
Drug Resist Updat. 2018 Jan;36:1-12. doi: 10.1016/j.drup.2017.11.001. Epub 2017 Nov 11.
6
Bedaquiline Inhibits the ATP Synthase in Mycobacterium abscessus and Is Effective in Infected Zebrafish.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01225-17. Print 2017 Nov.
7
Current Perspective of ATP Synthase Inhibitors in the Management of the Tuberculosis.
Curr Top Med Chem. 2021;21(18):1623-1643. doi: 10.2174/1568026621666210913122346.
8
Triple Mycobacterial ATP-synthase mutations impedes Bedaquiline binding: Atomistic and structural perspectives.
Comput Biol Chem. 2020 Apr;85:107204. doi: 10.1016/j.compbiolchem.2020.107204. Epub 2020 Jan 13.
9
Mechanism of mycobacterial ATP synthase inhibition by squaramides and second generation diarylquinolines.
EMBO J. 2023 Aug 1;42(15):e113687. doi: 10.15252/embj.2023113687. Epub 2023 Jun 28.
10
Variations of the Mycobacterium abscessus F-ATP synthase subunit a-c interface alter binding and potency of the anti-TB drug bedaquiline.
Biochem Biophys Res Commun. 2024 Jan 1;690:149249. doi: 10.1016/j.bbrc.2023.149249. Epub 2023 Nov 20.

引用本文的文献

1
Sudapyridine (WX-081) inhibits by targeting ATP synthase and upregulating host innate immunity.
mSphere. 2025 Jun 25;10(6):e0014925. doi: 10.1128/msphere.00149-25. Epub 2025 May 21.
2
ClpP2 proteasomes and SpxA1 determine Listeria monocytogenes tartrolon B hyper-resistance.
PLoS Genet. 2025 Apr 4;21(4):e1011621. doi: 10.1371/journal.pgen.1011621. eCollection 2025 Apr.
5
Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202414325. doi: 10.1002/anie.202414325. Epub 2025 Feb 10.
6
Pyrazinoic acid, the active form of the anti-tuberculosis drug pyrazinamide, and aromatic carboxylic acid analogs are protonophores.
Front Mol Biosci. 2024 Feb 13;11:1350699. doi: 10.3389/fmolb.2024.1350699. eCollection 2024.
7
Commensal antimicrobial resistance mediates microbiome resilience to antibiotic disruption.
Sci Transl Med. 2024 Jan 17;16(730):eadi9711. doi: 10.1126/scitranslmed.adi9711.
10
A tale of two inhibitors: diarylquinolines and squaramides.
EMBO J. 2023 Aug 1;42(15):e114912. doi: 10.15252/embj.2023114912. Epub 2023 Jul 12.

本文引用的文献

1
Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10860-5. doi: 10.1073/pnas.1612035113. Epub 2016 Sep 12.
2
Bedaquiline Targets the ε Subunit of Mycobacterial F-ATP Synthase.
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6977-6979. doi: 10.1128/AAC.01291-16. Print 2016 Nov.
3
Turning the respiratory flexibility of Mycobacterium tuberculosis against itself.
Nat Commun. 2016 Aug 10;7:12393. doi: 10.1038/ncomms12393.
4
Antiinfectives targeting enzymes and the proton motive force.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7073-82. doi: 10.1073/pnas.1521988112. Epub 2015 Dec 7.
5
Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline.
Sci Adv. 2015 May 8;1(4):e1500106. doi: 10.1126/sciadv.1500106. eCollection 2015 May.
6
Bactericidal mode of action of bedaquiline.
J Antimicrob Chemother. 2015 Jul;70(7):2028-37. doi: 10.1093/jac/dkv054. Epub 2015 Mar 8.
7
A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment.
Eur Respir J. 2015 Feb;45(2):554-7. doi: 10.1183/09031936.00142914. Epub 2014 Oct 30.
9
Acquired resistance of Mycobacterium tuberculosis to bedaquiline.
PLoS One. 2014 Jul 10;9(7):e102135. doi: 10.1371/journal.pone.0102135. eCollection 2014.
10
Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis.
Antimicrob Agents Chemother. 2014 May;58(5):2979-81. doi: 10.1128/AAC.00037-14. Epub 2014 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验