Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Institute of Molecular Psychiatry, Rheinische-Friedrichs-Wilhelm Universität Bonn, D-53127 Bonn, Germany.
Biomolecules. 2023 Oct 30;13(11):1596. doi: 10.3390/biom13111596.
Oxygen exchange reactions occurring at β-catalytic sites of the FF-ATP synthase/F-ATPase imprint a unique record of molecular events during the catalytic cycle of ATP synthesis/hydrolysis. This work presents a new theory of oxygen exchange and tests it on oxygen exchange data recorded on ATP hydrolysis by mitochondrial F-ATPase (MF). The apparent rate constant of oxygen exchange governing the intermediate Pi-HOH exchange accompanying ATP hydrolysis is determined by kinetic analysis over a ~50,000-fold range of substrate ATP concentration (0.1-5000 μM) and a corresponding ~200-fold range of reaction velocity (3.5-650 [moles of Pi/{moles of F-ATPase} s]). Isotopomer distributions of [O]Pi species containing 0, 1, 2, and 3 labeled oxygen atoms predicted by the theory have been quantified and shown to be in perfect agreement with the experimental distributions over the entire range of medium ATP concentrations without employing adjustable parameters. A novel molecular mechanism of steady-state multisite ATP hydrolysis by the F-ATPase has been proposed. Our results show that steady-state ATP hydrolysis by F-ATPase occurs with all three sites occupied by Mg-nucleotide. The various implications arising from models of energy coupling in ATP synthesis/hydrolysis by the ATP synthase/F-ATPase have been discussed. Current models of ATP hydrolysis by F-ATPase, including those postulated from single-molecule data, are shown to be effectively bisite models that contradict the data. The trisite catalysis formulated by Nath's torsional mechanism of energy transduction and ATP synthesis/hydrolysis since its first appearance 25 years ago is shown to be in better accord with the experimental record. The total biochemical information on ATP hydrolysis is integrated into a consistent model by the torsional mechanism of ATP synthesis/hydrolysis and shown to elucidate the elementary chemical and mechanical events within the black box of enzyme catalysis in energy metabolism by F-ATPase.
β 催化部位的氧交换反应为 ATP 合成/水解催化循环过程中的分子事件留下了独特的记录。本工作提出了一个新的氧交换理论,并在测定线粒体 F-ATP 酶(MF)水解 ATP 时的氧交换数据中对其进行了检验。动力学分析确定了控制伴随 ATP 水解发生的中间 Pi-HOH 交换的表观氧交换速率常数,分析范围跨越了 ~50,000 倍的底物 ATP 浓度(0.1-5000 μM)和 ~200 倍的反应速度(3.5-650 [摩尔 Pi/{摩尔 F-ATP 酶} s])。理论预测的含有 0、1、2 和 3 个标记氧原子的[O]Pi 物种的同位异构体分布已被量化,并在整个中等 ATP 浓度范围内与实验分布完全吻合,无需使用可调参数。提出了一种 F-ATP 酶稳态多位点 ATP 水解的新分子机制。研究结果表明,F-ATP 酶的稳态 ATP 水解是在所有三个位点都被 Mg-核苷酸占据的情况下发生的。从 ATP 合酶/F-ATP 酶的 ATP 合成/水解的能量偶联模型中得出的各种推论已经进行了讨论。目前提出的 F-ATP 酶的 ATP 水解模型,包括从单分子数据推断出的模型,被证明是有效的双位点模型,与数据不符。自 25 年前 Nath 的能量转导和 ATP 合成/水解扭转机制首次提出以来,三部位催化作用已被证明与实验记录更为一致。扭转机制将 ATP 水解的全部生化信息整合到一个一致的模型中,阐明了 F-ATP 酶能量代谢中酶催化的黑盒内的基本化学和机械事件。