Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany.
Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7332-7337. doi: 10.1073/pnas.1805376115. Epub 2018 Jun 25.
Virophages have the unique property of parasitizing giant viruses within unicellular hosts. Little is understood about how they form infectious virions in this tripartite interplay. We provide mechanistic insights into assembly and maturation of mavirus, a marine virophage, by combining structural and stability studies on capsomers, virus-like particles (VLPs), and native virions. We found that the mavirus protease processes the double jelly-roll (DJR) major capsid protein (MCP) at multiple C-terminal sites and that these sites are conserved among virophages. Mavirus MCP assembled in in the absence and presence of penton protein, forming VLPs with defined size and shape. While quantifying VLPs in lysates, we found that full-length rather than processed MCP is the competent state for capsid assembly. Full-length MCP was thermally more labile than truncated MCP, and crystal structures of both states indicate that full-length MCP has an expanded DJR core. Thus, we propose that the MCP C-terminal domain serves as a scaffolding domain by adding strain on MCP to confer assembly competence. Mavirus protease processed MCP more efficiently after capsid assembly, which provides a regulation mechanism for timing capsid maturation. By analogy to Sputnik and adenovirus, we propose that MCP processing renders mavirus particles infection competent by loosening interactions between genome and capsid shell and destabilizing pentons for genome release into host cells. The high structural similarity of mavirus and Sputnik capsid proteins together with conservation of protease and MCP processing suggest that assembly and maturation mechanisms described here are universal for virophages.
噬病毒体具有寄生在单细胞宿主内的巨型病毒的独特特性。在这种三方相互作用中,噬病毒体如何形成感染性病毒粒子,人们对此知之甚少。我们通过对衣壳粒、病毒样颗粒(VLPs)和天然病毒粒子进行结构和稳定性研究,为海洋噬病毒体 mavirus 的组装和成熟提供了机制上的见解。我们发现,mavirus 蛋白酶在多个 C 末端位点切割双果冻卷(DJR)主要衣壳蛋白(MCP),并且这些位点在噬病毒体中是保守的。在没有五邻体蛋白存在的情况下,mavirus MCP 在 中组装,形成具有确定大小和形状的 VLPs。在定量 裂解物中的 VLPs 时,我们发现全长而非加工的 MCP 是衣壳组装的有能力状态。全长 MCP 比截短的 MCP 热稳定性差,两种状态的晶体结构表明全长 MCP 具有扩展的 DJR 核心。因此,我们提出 MCP C 末端结构域作为支架结构域,通过增加 MCP 的张力赋予衣壳组装能力。噬病毒体蛋白酶在衣壳组装后更有效地处理 MCP,这为控制衣壳成熟的时间提供了一种调节机制。通过类比 Sputnik 和腺病毒,我们提出 MCP 加工通过削弱基因组和衣壳壳之间的相互作用以及使五邻体不稳定来释放基因组进入宿主细胞,从而使 mavirus 颗粒具有感染能力。mavirus 和 Sputnik 衣壳蛋白的高结构相似性以及蛋白酶和 MCP 加工的保守性表明,这里描述的组装和成熟机制对噬病毒体是普遍适用的。