Moyer Crystal L, Besser Eli S, Nemerow Glen R
Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA.
Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
J Virol. 2015 Oct 21;90(1):521-32. doi: 10.1128/JVI.02014-15. Print 2016 Jan 1.
Proteolytic maturation drives the conversion of stable, immature virus particles to a mature, metastable state primed for cell infection. In the case of human adenovirus, this proteolytic cleavage is mediated by the virally encoded protease AVP. Protein VI, an internal capsid cement protein and substrate for AVP, is cleaved at two sites, one of which is near the N terminus of the protein. In mature capsids, the 33 residues at the N terminus of protein VI (pVIn) are sequestered inside the cavity formed by peripentonal hexon trimers at the 5-fold vertex. Here, we describe a glycine-to-alanine mutation in the N-terminal cleavage site of protein VI that profoundly impacts proteolytic processing, the generation of infectious particles, and cell entry. The phenotypic effects associated with this mutant provide a mechanistic framework for understanding the multifunctional nature of protein VI. Based on our findings, we propose that the primary function of the pVIn peptide is to mediate interactions between protein VI and hexon during virus replication, driving hexon nuclear accumulation and particle assembly. Once particles are assembled, AVP-mediated cleavage facilitates the release of the membrane lytic region at the amino terminus of mature VI, allowing it to lyse the endosome during cell infection. These findings highlight the importance of a single maturation cleavage site for both infectious particle production and cell entry and emphasize the exquisite spatiotemporal regulation governing adenovirus assembly and disassembly.
Postassembly virus maturation is a cornerstone principle in virology. However, a mechanistic understanding of how icosahedral viruses utilize this process to transform immature capsids into infection-competent particles is largely lacking. Adenovirus maturation involves proteolytic processing of seven precursor proteins. There is currently no information for the role of each independent cleavage event in the generation of infectious virions. To address this, we investigated the proteolytic maturation of one adenovirus precursor molecule, protein VI. Structurally, protein VI cements the outer capsid shell and links it to the viral core. Functionally, protein VI is involved in endosome disruption, subcellular trafficking, transcription activation, and virus assembly. Our studies demonstrate that the multifunctional nature of protein VI is largely linked to its maturation. Through mutational analysis, we show that disrupting the N-terminal cleavage of preprotein VI has major deleterious effects on the assembly of infectious virions and their subsequent ability to infect host cells.
蛋白水解成熟驱动稳定的未成熟病毒颗粒转变为成熟的亚稳态,为细胞感染做好准备。就人腺病毒而言,这种蛋白水解切割由病毒编码的蛋白酶AVP介导。蛋白VI是一种内部衣壳黏合蛋白,也是AVP的底物,在两个位点被切割,其中一个位点靠近该蛋白的N端。在成熟衣壳中,蛋白VI(pVIn)N端的33个残基被隔离在由五邻体周围的六邻体三聚体在5倍顶点形成的腔内。在此,我们描述了蛋白VI N端切割位点的甘氨酸到丙氨酸突变,该突变对蛋白水解加工、感染性颗粒的产生和细胞进入有深远影响。与该突变体相关的表型效应为理解蛋白VI的多功能性质提供了一个机制框架。基于我们的发现,我们提出pVIn肽的主要功能是在病毒复制过程中介导蛋白VI和六邻体之间的相互作用,驱动六邻体向细胞核积累和颗粒组装。一旦颗粒组装完成,AVP介导的切割促进成熟VI氨基端膜裂解区域的释放,使其在细胞感染期间裂解内体。这些发现突出了单个成熟切割位点对感染性颗粒产生和细胞进入的重要性,并强调了腺病毒组装和拆卸过程中精确的时空调控。
组装后病毒成熟是病毒学的一个基石原则。然而,对于二十面体病毒如何利用这一过程将未成熟衣壳转化为具有感染能力的颗粒,在很大程度上缺乏机制上的理解。腺病毒成熟涉及七种前体蛋白的蛋白水解加工。目前尚无关于每个独立切割事件在感染性病毒粒子产生中作用的信息。为了解决这个问题,我们研究了一种腺病毒前体分子蛋白VI的蛋白水解成熟。在结构上,蛋白VI巩固外衣壳壳并将其连接到病毒核心。在功能上,蛋白VI参与内体破坏、亚细胞运输、转录激活和病毒组装。我们的研究表明,蛋白VI的多功能性质在很大程度上与其成熟有关。通过突变分析,我们表明破坏前蛋白VI的N端切割对感染性病毒粒子的组装及其随后感染宿主细胞的能力有重大有害影响。