Yu Chenyang, Gong Yujiao, Chen Ruyi, Zhang Mingyi, Zhou Jinyuan, An Jianing, Lv Fan, Guo Shaojun, Sun Gengzhi
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.
Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education, Harbin Normal University, 1 South Normal University Road, Harbin, 150025, P. R. China.
Small. 2018 Jun 25:e1801203. doi: 10.1002/smll.201801203.
Fiber-shaped supercapacitors with improved specific capacitance and high rate capability are a promising candidate as power supply for smart textiles. However, the synergistic interaction between conductive filaments and active nanomaterials remains a crucial challenge, especially when hydrothermal or electrochemical deposition is used to produce a core (fiber)-shell (active materials) fibrous structure. On the other hand, although 2D pseudocapacitive materials, e.g., Ti C T (MXene), have demonstrated high volumetric capacitance, high electrical conductivity, and hydrophilic characteristics, MXene-based electrodes normally suffer from poor rate capability owing to the sheet restacking especially when the loading level is high and solid-state gel is used as electrolyte. Herein, by hosting MXene nanosheets (Ti C T ) in the corridor of a scrolled carbon nanotube (CNT) scaffold, a MXene/CNT fiber with helical structure is successfully fabricated. These features offer open spaces for rapid ion diffusion and guarantee fast electron transport. The solid-state supercapacitor based on such hybrid fibers with gel electrolyte coating exhibits a volumetric capacitance of 22.7 F cm at 0.1 A cm with capacitance retention of 84% at current density of 1.0 A cm (19.1 F cm ), improved volumetric energy density of 2.55 mWh cm at the power density of 45.9 mW cm , and excellent mechanical robustness.
具有更高比电容和高倍率性能的纤维状超级电容器是智能纺织品电源的一个有前途的候选者。然而,导电细丝与活性纳米材料之间的协同相互作用仍然是一个关键挑战,特别是当使用水热或电化学沉积来制备核(纤维)-壳(活性材料)纤维结构时。另一方面,尽管二维赝电容材料,如Ti₃C₂Tₓ(MXene),已表现出高体积电容、高电导率和亲水特性,但基于MXene的电极通常由于片层重新堆叠而倍率性能较差,特别是当负载水平较高且使用固态凝胶作为电解质时。在此,通过将MXene纳米片(Ti₃C₂Tₓ)容纳在卷曲碳纳米管(CNT)支架的通道中,成功制备了具有螺旋结构的MXene/CNT纤维。这些特性为快速离子扩散提供了开放空间,并保证了快速电子传输。基于这种具有凝胶电解质涂层的混合纤维的固态超级电容器在0.1 A cm⁻²时的体积电容为22.7 F cm⁻³,在1.0 A cm⁻²(19.1 F cm⁻³)的电流密度下电容保持率为84%,在45.9 mW cm⁻³的功率密度下体积能量密度提高到2.55 mWh cm⁻³,并且具有出色的机械坚固性。