Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
FEBS J. 2018 Aug;285(16):3077-3096. doi: 10.1111/febs.14598. Epub 2018 Jul 7.
Malaria is a deadly disease killing worldwide hundreds of thousands people each year and the responsible parasite has acquired resistance to the available drug combinations. The four vacuolar plasmepsins (PMs) in Plasmodium falciparum involved in hemoglobin (Hb) catabolism represent promising targets to combat drug resistance. High antimalarial activities can be achieved by developing a single drug that would simultaneously target all the vacuolar PMs. We have demonstrated for the first time the use of soluble recombinant plasmepsin II (PMII) for structure-guided drug discovery with KNI inhibitors. Compounds used in this study (KNI-10742, 10743, 10395, 10333, and 10343) exhibit nanomolar inhibition against PMII and are also effective in blocking the activities of PMI and PMIV with the low nanomolar K values. The high-resolution crystal structures of PMII-KNI inhibitor complexes reveal interesting features modulating their differential potency. Important individual characteristics of the inhibitors and their importance for potency have been established. The alkylamino analog, KNI-10743, shows intrinsic flexibility at the P2 position that potentiates its interactions with Asp132, Leu133, and Ser134. The phenylacetyl tripeptides, KNI-10333 and KNI-10343, accommodate different ρ-substituents at the P3 phenylacetyl ring that determine the orientation of the ring, thus creating novel hydrogen-bonding contacts. KNI-10743 and KNI-10333 possess significant antimalarial activity, block Hb degradation inside the food vacuole, and show no cytotoxicity on human cells; thus, they can be considered as promising candidates for further optimization. Based on our structural data, novel KNI derivatives with improved antimalarial activity could be designed for potential clinical use. DATABASE: Structural data are available in the PDB under the accession numbers 5YIE, 5YIB, 5YID, 5YIC, and 5YIA.
疟疾是一种致命疾病,每年在全球造成数十万人死亡,而负责的寄生虫已经对现有药物组合产生了耐药性。恶性疟原虫中涉及血红蛋白(Hb)分解的四个液泡原浆朊酶(PMs)是对抗耐药性的有前途的靶标。通过开发一种同时针对所有液泡 PM 的单一药物,可以实现高抗疟活性。我们首次使用可溶性重组原浆朊酶 II(PMII)进行了基于结构的药物发现,使用了 KNI 抑制剂。本研究中使用的化合物(KNI-10742、10743、10395、10333 和 10343)对 PMII 表现出纳摩尔抑制作用,并且以低纳摩尔 K 值有效阻断 PMI 和 PMIV 的活性。PMII-KNI 抑制剂复合物的高分辨率晶体结构揭示了调节其差异效力的有趣特征。确定了抑制剂的重要个体特征及其效力的重要性。烷基氨基类似物 KNI-10743 在 P2 位置表现出固有灵活性,增强了与 Asp132、Leu133 和 Ser134 的相互作用。苯乙酰三肽 KNI-10333 和 KNI-10343 在 P3 苯乙酰环上容纳不同的 ρ-取代基,决定了环的取向,从而形成新的氢键接触。KNI-10743 和 KNI-10333 具有显著的抗疟活性,阻断食物泡内的 Hb 降解,对人细胞无细胞毒性;因此,它们可以被认为是进一步优化的有前途的候选药物。基于我们的结构数据,可以设计具有改善的抗疟活性的新型 KNI 衍生物,用于潜在的临床应用。数据库:结构数据可在 PDB 中以 5YIE、5YIB、5YID、5YIC 和 5YIA 的访问号获得。