Suppr超能文献

扩展的莲花效应:通过 CHic 化学修复污染或损坏后的超疏水表面。

Extending the Lotus Effect: Repairing Superhydrophobic Surfaces after Contamination or Damage by CHic Chemistry.

机构信息

Department of Microsystems Engineering , University of Freiburg , Georges-Köhler-Allee 103 , 79110 Freiburg , Germany.

Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) , University of Freiburg , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany.

出版信息

Langmuir. 2018 Jul 24;34(29):8661-8669. doi: 10.1021/acs.langmuir.8b01179. Epub 2018 Jul 16.

Abstract

Superhydrophobic surfaces have gained a reputation to show a self-cleaning behavior ("Lotus effect") as drops rolling off the surface take along loosely adhering dust particles. However, this self-cleaning process reaches its limits when such surfaces are brought in contact with sticky contaminants such as oils and smaller particles. Once intimate contact is established between the surface and a small particle, it will be almost impossible to remove it because of strong surface interactions. Such contaminations, however, lead to contact line pinning and destroy the superhydrophobic effect. Because the fragility of the micro- and nanostructures prohibits any mechanical cleaning, the sample is usually doomed. Here, we report a universal method for restoring superhydrophobicity: by simple dip-coating, a conformal ultrathin layer (≈10 nm) of a highly hydrophobic and photoreactive fluoropolymer is deposited. Through short UV irradiation (5 min), this thin layer is cross-linked and chemically attached to the underlying surface by C,H-insertion cross-linking, thus covering the contaminant like a thin veil. We use this "cover-up" strategy of masking the contaminants to restore superhydrophobicity. We demonstrate this principle by deliberately soiling the surface with various model contaminants, such as oily substances and particles, and study the repair process.

摘要

超疏水表面因其自清洁行为(“莲花效应”)而备受关注,即当液滴从表面滚落时,会带走附着不牢的灰尘颗粒。然而,当这些表面与粘性污染物(如油和较小的颗粒)接触时,这种自清洁过程就会达到极限。一旦表面与小颗粒之间建立了紧密接触,由于强烈的表面相互作用,几乎不可能将其去除。然而,这种污染会导致接触线固定,并破坏超疏水性。由于微纳米结构的脆弱性禁止任何机械清洁,因此样品通常注定会受到污染。在这里,我们报告了一种恢复超疏水性的通用方法:通过简单的浸涂,在基底表面上沉积一层约 10nm 厚的高度疏水和光反应性氟聚合物的保形超薄层。通过短时间的紫外光照射(5 分钟),该薄膜层通过 C,H 插入交联进行交联,并通过化学键合附着在基底表面上,从而像一层薄面纱一样覆盖污染物。我们使用这种“掩盖”策略来屏蔽污染物,以恢复超疏水性。我们通过故意用各种模型污染物(如油性物质和颗粒)污染表面来证明这一原理,并研究了修复过程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验