Suppr超能文献

局部前列腺腺癌的综合分子分类揭示了一种预测非侵袭性疾病的肿瘤亚型。

Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease.

机构信息

Tumour Identity Card Program (CIT), French League Against Cancer, Paris, France.

Research Center for Prostatic Pathologies (CeRePP), Paris, France; Clinical Research Group n°5, ONCOTYPE-URO, Pierre and Marie Curie University, Paris, France.

出版信息

Ann Oncol. 2018 Aug 1;29(8):1814-1821. doi: 10.1093/annonc/mdy224.

Abstract

BACKGROUND

Management of localized prostate cancer (PCa) is a major clinical challenge since most of these cancers would not evolve but a majority of patients will still undergo a life-changing radical surgery. Molecular studies have shown that PCa can be classified according to their genomic alterations but none of the published PCa molecular classifications could identify a subtype corresponding to non-evolutive tumours.

MATERIALS AND METHODS

Multi-omics molecular profiling was carried out on post-radical prostatectomy material from a cohort of 130 patients with localized PCa. We used unsupervised classification techniques to build a comprehensive classification of prostate tumours based on three molecular levels: DNA copy number, DNA methylation, and mRNA expression. Merged data from our cohort and The Cancer Genome Atlas cohort were used to characterize the resulting tumour subtypes. We measured subtype-associated risks of biochemical relapse using Cox regression models and survival data from five cohorts including the two aforementioned.

RESULTS

We describe three PCa molecular subtypes associated with specific molecular characteristics and different clinical outcomes. Particularly, one subtype was strongly associated with the absence of biochemical recurrence. We validated this finding on 746 samples from 5 distinct cohorts (P = 3.41 × 10-8, N = 746 tumour samples), and showed that our subtyping approach outperformed the most popular prognostic molecular signatures to accurately identify a subset of patients with a non-evolutive disease. We provide a set of 36 transcriptomic biomarkers to robustly identify this subtype of non-evolutive cases whose prevalence was estimated to 22% of all localized PCa tumours.

CONCLUSION

At least 20% of patients with localized PCa can be accurately predicted to have a non-evolutive disease on the basis of their molecular subtype. Those patients should not undergo immediate surgery and rather be placed under active surveillance.

摘要

背景

局限性前列腺癌(PCa)的治疗是一个主要的临床挑战,因为大多数此类癌症不会进展,但大多数患者仍将接受改变生活的根治性手术。分子研究表明,PCa 可以根据其基因组改变进行分类,但发表的任何 PCa 分子分类都无法确定对应于非进展性肿瘤的亚型。

材料和方法

对来自 130 例局限性 PCa 患者根治性前列腺切除术后标本进行了多组学分子谱分析。我们使用无监督分类技术,基于三个分子水平(DNA 拷贝数、DNA 甲基化和 mRNA 表达)构建了前列腺肿瘤的综合分类。合并我们队列和癌症基因组图谱队列的数据,以表征由此产生的肿瘤亚型。我们使用 Cox 回归模型测量了与生化复发相关的亚型风险,并使用包括上述两个队列在内的五个队列的生存数据进行了分析。

结果

我们描述了三种与特定分子特征和不同临床结果相关的 PCa 分子亚型。特别是,有一种亚型与生化无复发生存率密切相关。我们在来自 5 个不同队列的 746 个样本上验证了这一发现(P=3.41×10-8,N=746 个肿瘤样本),并表明我们的分型方法优于最流行的预后分子特征,能够准确识别出一组非进展性疾病患者。我们提供了一组 36 个转录组生物标志物,以可靠地识别这种非进展性病例的亚型,估计其在所有局限性 PCa 肿瘤中的患病率为 22%。

结论

至少 20%的局限性 PCa 患者可以根据其分子亚型准确预测为非进展性疾病。这些患者不应立即接受手术,而应接受主动监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验