Suppr超能文献

基于 CloudMC 的放射治疗的蒙特卡罗验证。

Monte Carlo verification of radiotherapy treatments with CloudMC.

机构信息

Department of Medical Physics, Hospital Universitario Virgen Macarena, Av. Doctor Fedriani 3, 41009, Seville, Spain.

Biomedicine Institute of Seville (IBiS), Antonio Maura Montaner, 41013, Seville, Spain.

出版信息

Radiat Oncol. 2018 Jun 27;13(1):99. doi: 10.1186/s13014-018-1051-9.

Abstract

BACKGROUND

A new implementation has been made on CloudMC, a cloud-based platform presented in a previous work, in order to provide services for radiotherapy treatment verification by means of Monte Carlo in a fast, easy and economical way. A description of the architecture of the application and the new developments implemented is presented together with the results of the tests carried out to validate its performance.

METHODS

CloudMC has been developed over Microsoft Azure cloud. It is based on a map/reduce implementation for Monte Carlo calculations distribution over a dynamic cluster of virtual machines in order to reduce calculation time. CloudMC has been updated with new methods to read and process the information related to radiotherapy treatment verification: CT image set, treatment plan, structures and dose distribution files in DICOM format. Some tests have been designed in order to determine, for the different tasks, the most suitable type of virtual machines from those available in Azure. Finally, the performance of Monte Carlo verification in CloudMC is studied through three real cases that involve different treatment techniques, linac models and Monte Carlo codes.

RESULTS

Considering computational and economic factors, D1_v2 and G1 virtual machines were selected as the default type for the Worker Roles and the Reducer Role respectively. Calculation times up to 33 min and costs of 16 € were achieved for the verification cases presented when a statistical uncertainty below 2% (2σ) was required. The costs were reduced to 3-6 € when uncertainty requirements are relaxed to 4%.

CONCLUSIONS

Advantages like high computational power, scalability, easy access and pay-per-usage model, make Monte Carlo cloud-based solutions, like the one presented in this work, an important step forward to solve the long-lived problem of truly introducing the Monte Carlo algorithms in the daily routine of the radiotherapy planning process.

摘要

背景

在之前的工作中提出了基于云的平台 CloudMC,现在对其进行了新的实现,以便通过蒙特卡罗方法快速、轻松且经济地提供放射治疗验证服务。本文介绍了该应用程序的架构和新开发内容,并展示了对其性能进行的测试结果。

方法

CloudMC 是在 Microsoft Azure 云上开发的。它基于用于将蒙特卡罗计算分布在动态虚拟机集群上的映射/缩减实现,以减少计算时间。为了读取和处理与放射治疗验证相关的信息(CT 图像集、治疗计划、结构和剂量分布文件),对 CloudMC 进行了更新。设计了一些测试来确定在 Azure 中可用的不同虚拟机类型,以便为不同任务选择最合适的类型。最后,通过三个涉及不同治疗技术、直线加速器模型和蒙特卡罗代码的真实案例来研究 CloudMC 中的蒙特卡罗验证性能。

结果

考虑到计算和经济因素,分别选择 D1_v2 和 G1 虚拟机作为 Worker Role 和 Reducer Role 的默认类型。当需要达到低于 2%(2σ)的统计不确定性时,对于所呈现的验证案例,计算时间可达到 33 分钟,成本为 16 欧元。当不确定性要求放宽至 4%时,成本可降低至 3-6 欧元。

结论

像这种基于云计算的蒙特卡罗解决方案具有计算能力高、可扩展性强、易于访问和按使用付费的模型等优势,是朝着在放射治疗计划过程的日常工作中真正引入蒙特卡罗算法这一长期存在的问题迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cc2/6020449/5a6733b64d40/13014_2018_1051_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验