Lai C S, Korytowski W, Niu C H, Cheng S Y
Biochem Biophys Res Commun. 1985 Aug 30;131(1):408-12. doi: 10.1016/0006-291x(85)91817-0.
Using electron spin resonance stop-flow technique, the transverse motion (flip-flop) of 3-([alpha-carboxy-4-(4-hydroxy-3-iodophenoxy)-3,5- diiodophenethyl]carbamoyl)-2,2,5,5-tetramethyl-3-pyrrolin (T3-SL) in dipalmitoyl L-alpha-phosphosphatidylcholine (DPPC) membranes was evaluated. At 22 degrees C, the electron spin resonance spectra of T3-SL in DPPC vesicles were compared before and after the addition of sodium ascorbate, a membrane impermeable reducing agent. The addition of ascorbate reduces the signal amplitude by 67% in 3 min but yields no further reduction for at least 60 min. These results indicate that T3-SL does not flip-flop at any appreciable rate in the membranes. This finding suggests that once partitioned into the membrane, T3 remains in the outer half of the lipid bilayer, thus reducing the possibility that T3 enters the cell by passive diffusion.