College of Physics, Optoelectronics and Energy, Collaborative Innovation Center of Suzhou Nano Science and Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China.
Nanoscale. 2018 Jul 9;10(26):12848-12854. doi: 10.1039/c8nr02466a.
We experimentally report improved photocurrent performance under the illumination of both UV and visible light in the metal-semiconductor-metal nanostructures with double Schottky barriers, consisting of a monolayer of Au nanoparticles and a planar Au film separated by a thin WO3 layer. In addition to the near-unit broadband optical absorption causing the increased population of hot electrons, we demonstrate that the occurrence of the electron trapping effect at the bottom Schottky barrier is also responsible for the photocurrent enhancement under visible light illumination. Under the direct UV bandgap excitation of WO3, the electron trapping effect at the bottom barrier plays a crucial role in the anodic photocurrent enhancement. Furthermore, we demonstrate that by replacing the Au film with the metal Pt of higher work function to increase the barrier height of the bottom Schottky barrier, and hence strengthening its ability for electron trapping, the photocurrent is found to gain a further significant enhancement under the illumination of both visible and UV light.
我们通过实验报告了在具有双肖特基势垒的金属-半导体-金属纳米结构中,光电流性能在紫外光和可见光照射下得到改善,该纳米结构由单层 Au 纳米粒子和平面 Au 薄膜组成,中间由一层薄 WO3 层隔开。除了导致热电子增加的宽带近单位光吸收之外,我们还证明了在可见光照射下,电子俘获效应在底部肖特基势垒处的发生也是光电流增强的原因。在 WO3 的直接紫外带隙激发下,底部势垒处的电子俘获效应在阳极光电流增强中起着至关重要的作用。此外,我们还证明了通过用功函数更高的金属 Pt 取代 Au 薄膜来增加底部肖特基势垒的势垒高度,从而增强其电子俘获能力,在可见光和紫外光照射下,光电流会得到进一步显著增强。