Neurology Department, Eugenio Espejo Hospital, Gran Colombia Ave., 170136, Quito, Pichincha, Ecuador.
San Francisco University of Quito (USFQ), Quito, Ecuador.
Neurocrit Care. 2018 Dec;29(3):413-418. doi: 10.1007/s12028-018-0549-1.
Adequate identification of the severity of status epilepticus (SE) contributes to individualized treatment. The scales most widely used for this purpose are: Status Epilepticus Severity Score (STESS), Epidemiology-Based Mortality Score in Status Epilepticus (EMSE) and modified Rankin Scale STESS (mRSTESS). The aim of this study was to evaluate the performance of the STESS, EMSE and mRSTESS scales to predict high disability and hospital mortality at discharge (HD/HM).
A prospective study was conducted in which total of 41 patients were registered from November 2015 to January 2018 at Eugenio Espejo Hospital. Clinical variables such as age, sex, clinical status at the beginning of the SE, initial symptom of SE, as well as the STESS, mRSTESS and EMSE variant scales were studied at the time of the diagnosis of SE.
A total of 41 patients were evaluated, of which 8 (19.5%) had HD at hospital discharge and died 13 (31.7%) during their care. The area under the receiver operating characteristic curve to predict HD/HM was 0.71 (95% CI (confidence interval) 0.55-0.87), 0.81 (95% CI 0.67-0.94), 0.89 (95% CI 0.79-0.99), 0.90 (95% CI 0.80-1.0), 0.89 (95% CI 0.78-0.99) for the STESS, mRSTESS, EMSE-EAC (etiology, age, comorbidities), EMSE-EACEG (etiology, age, comorbidities, electroencephalography) and EMSE-ECLEG (etiology, age, level of consciousness at pre-treatment, electroencephalography), variants of EMSE, respectively. The binary logistic regression demonstrated how the following cut-off points were determined: STESS OR (odd ratio) 4.80 (p = 0.02), mRSTESS OR 7.89 (p = 0.00), EMSE-EAC OR 22.16 (p = 0.00), EMSE-ECLEG OR 18.00 (p = 0.00), EMSE-EACEG OR 14 (p = 0.00).
All of the evaluated scales (STESS, mRSTESS, and EMSE) were shown to be useful in predicting HD/HM. EMSE was observed to be the most effective of the scales, with relative similarities among the variants.
充分识别癫痫持续状态(SE)的严重程度有助于实现个体化治疗。为此目的最广泛使用的量表是:癫痫持续状态严重程度评分(STESS)、基于病因的癫痫持续状态死亡率评分(EMSE)和改良 Rankin 量表癫痫持续状态评分(mRSTESS)。本研究的目的是评估 STESS、EMSE 和 mRSTESS 量表预测出院时高残疾和医院死亡率(HD/HM)的性能。
进行了一项前瞻性研究,2015 年 11 月至 2018 年 1 月期间在 Eugenio Espejo 医院共登记了 41 例患者。在 SE 诊断时研究了临床变量,如年龄、性别、SE 开始时的临床状态、SE 的初始症状以及 STESS、mRSTESS 和 EMSE 变异量表。
共评估了 41 例患者,其中 8 例(19.5%)在出院时存在 HD,13 例(31.7%)在治疗期间死亡。预测 HD/HM 的受试者工作特征曲线下面积分别为 0.71(95%CI(置信区间)0.55-0.87)、0.81(95%CI 0.67-0.94)、0.89(95%CI 0.79-0.99)、0.90(95%CI 0.80-1.0)、0.89(95%CI 0.78-0.99),用于 STESS、mRSTESS、EMSE-EAC(病因、年龄、合并症)、EMSE-EACEG(病因、年龄、合并症、脑电图)和 EMSE-ECLEG(病因、年龄、治疗前意识水平、脑电图),EMSE 的变体。二元逻辑回归表明如何确定以下截断点:STESS OR(比值比)4.80(p=0.02)、mRSTESS OR 7.89(p=0.00)、EMSE-EAC OR 22.16(p=0.00)、EMSE-ECLEG OR 18.00(p=0.00)、EMSE-EACEG OR 14(p=0.00)。
所有评估的量表(STESS、mRSTESS 和 EMSE)均显示可用于预测 HD/HM。EMSE 是最有效的量表,变体之间相对相似。