Suppr超能文献

经组织学证实的良性和恶性肺部病变的CT纹理分析

CT texture analysis of histologically proven benign and malignant lung lesions.

作者信息

Digumarthy Subba R, Padole Atul M, Lo Gullo Roberto, Singh Ramandeep, Shepard Jo-Anne O, Kalra Mannudeep K

机构信息

Department of Radiology, Massachusetts General Hospital, Boston, MA Department of Radiology, European Institute of Oncology, Milan, Italy.

出版信息

Medicine (Baltimore). 2018 Jun;97(26):e11172. doi: 10.1097/MD.0000000000011172.

Abstract

The purpose of our study was to determine accuracy of CT texture analysis (CTTA) for differentiating benign from malignant pulmonary nodules, and well-differentiated from poorly differentiated lung cancers, with histology as the standard of reference.In this IRB-approved study, 175 adult patients (average age 66 ± 12 years; age range 27-89 years, male 82: female 93) who underwent a noncontrast chest CT examination prior to CT-guided biopsy of pulmonary nodules were included. There were 57 benign (24 tumors or tumor-like lesions; 33 inflammatory conditions) and 120 malignant (29 well-differentiated adenocarcinomas, 48 poorly differentiated adenocarcinomas, and 43 squamous cell carcinomas) diagnoses on pathology. CTTA was performed on the prebiopsy noncontrast CT images using a commercially available software (TexRAD limited, UK). The CTCA features analyzed included mean HU values, percent positive pixels (PPP), mean value of positive pixels (MPP), standard deviation (SD), normalized SD, skewness, kurtosis, and entropy.The ROC analyses showed that normalized SD [AUC: 0.63, (CI: 0.55-72), P = .003] had moderate accuracy for differentiating between benign and malignant lesions. For differentiating among well-differentiated and poorly differentiated tumors, the ROC analysis showed that except skewness all other parameters were statistically significant The AUC values of other CTTA parameters were: mean (AUC: 0.73-0.76, P = .001- < .0001).CT texture analyses can reliably predict well- and poorly differentiated lung malignancies. However, inflammatory lung lesions with tissue heterogeneity negatively affect the performance of CTTA when it comes to differentiation between benign and malignant pulmonary nodules.

摘要

本研究的目的是以组织学为参考标准,确定CT纹理分析(CTTA)在鉴别肺良性结节与恶性结节以及高分化肺癌与低分化肺癌方面的准确性。在这项经机构审查委员会批准的研究中,纳入了175例成年患者(平均年龄66±12岁;年龄范围27 - 89岁,男性82例,女性93例),这些患者在进行肺结节CT引导活检之前接受了非增强胸部CT检查。病理诊断有57例良性病变(24例肿瘤或肿瘤样病变;33例炎症性疾病)和120例恶性病变(29例高分化腺癌、48例低分化腺癌和43例鳞状细胞癌)。使用市售软件(英国TexRAD有限公司)对活检前的非增强CT图像进行CTTA。分析的CTCA特征包括平均HU值、阳性像素百分比(PPP)、阳性像素平均值(MPP)、标准差(SD)、归一化标准差、偏度、峰度和熵。ROC分析表明,归一化标准差[AUC:0.63,(CI:0.55 - 72),P = 0.003]在鉴别良性和恶性病变方面具有中等准确性。对于鉴别高分化和低分化肿瘤,ROC分析表明除偏度外所有其他参数均具有统计学意义。其他CTTA参数的AUC值为:平均值(AUC:0.73 - 0.76,P = 0.001 - <0.0001)。CT纹理分析能够可靠地预测高分化和低分化肺恶性肿瘤。然而,当涉及到鉴别肺良性结节与恶性结节时,具有组织异质性的炎症性肺病变会对CTTA的性能产生负面影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee1b/6039644/466e5b3e894d/medi-97-e11172-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验