Suppr超能文献

LPG:一种在全基因组关联研究中利用多效性的四组概率方法。

LPG: A four-group probabilistic approach to leveraging pleiotropy in genome-wide association studies.

机构信息

School of Statistics and Management, The Shanghai University of Finance and Economics, Guoding Road, Shanghai, China.

Centre for Quantitative Medicine, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.

出版信息

BMC Genomics. 2018 Jun 28;19(1):503. doi: 10.1186/s12864-018-4851-2.

Abstract

BACKGROUND

To date, genome-wide association studies (GWAS) have successfully identified tens of thousands of genetic variants among a variety of traits/diseases, shedding light on the genetic architecture of complex disease. The polygenicity of complex diseases is a widely accepted phenomenon through which a vast number of risk variants, each with a modest individual effect, collectively contribute to the heritability of complex diseases. This imposes a major challenge on fully characterizing the genetic bases of complex diseases. An immediate implication of polygenicity is that a much larger sample size is required to detect individual risk variants with weak/moderate effects. Meanwhile, accumulating evidence suggests that different complex diseases can share genetic risk variants, a phenomenon known as pleiotropy.

RESULTS

In this study, we propose a statistical framework for Leveraging Pleiotropic effects in large-scale GWAS data (LPG). LPG utilizes a variational Bayesian expectation-maximization (VBEM) algorithm, making it computationally efficient and scalable for genome-wide-scale analysis. To demonstrate the advantages of LPG over existing methods that do not leverage pleiotropy, we conducted extensive simulation studies and applied LPG to analyze two pairs of disorders (Crohn's disease and Type 1 diabetes, as well as rheumatoid arthritis and Type 1 diabetes). The results indicate that by levelaging pleiotropy, LPG can improve the power of prioritization of risk variants and the accuracy of risk prediction.

CONCLUSIONS

Our methodology provides a novel and efficient tool to detect pleiotropy among GWAS data for multiple traits/diseases collected from different studies. The software is available at https://github.com/Shufeyangyi2015310117/LPG .

摘要

背景

迄今为止,全基因组关联研究(GWAS)已经成功地在多种性状/疾病中鉴定了成千上万的遗传变异,揭示了复杂疾病的遗传结构。复杂疾病的多基因性是一种被广泛接受的现象,即大量风险变异体,每个变异体的个体效应都很轻微,共同导致了复杂疾病的遗传性。这对全面描述复杂疾病的遗传基础构成了重大挑战。多基因性的一个直接含义是,需要更大的样本量来检测具有微弱/中等效应的个体风险变异体。同时,越来越多的证据表明,不同的复杂疾病可以共享遗传风险变异体,这种现象被称为多效性。

结果

在这项研究中,我们提出了一种利用大规模 GWAS 数据中的多效性(LPG)的统计框架。LPG 利用变分贝叶斯期望最大化(VBEM)算法,使其在基因组范围内的分析中具有计算效率和可扩展性。为了展示 LPG 相对于不利用多效性的现有方法的优势,我们进行了广泛的模拟研究,并将 LPG 应用于分析两对疾病(克罗恩病和 1 型糖尿病,以及类风湿关节炎和 1 型糖尿病)。结果表明,通过水平分层多效性,LPG 可以提高风险变异体优先级的功效和风险预测的准确性。

结论

我们的方法为从不同研究中收集的多种性状/疾病的 GWAS 数据中检测多效性提供了一种新颖而有效的工具。该软件可在 https://github.com/Shufeyangyi2015310117/LPG 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/090f/6022345/6fef0ca99265/12864_2018_4851_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验