From the Immunobiology Group, Heart Research Institute, Sydney, Australia (L.Z.V., N.K.P.W., C.A.B.).
Sydney Medical School, University of Sydney, Australia (L.Z.V., N.K.P.W., C.A.B.).
Arterioscler Thromb Vasc Biol. 2018 Aug;38(8):1691-1701. doi: 10.1161/ATVBAHA.118.310788.
Revascularization because of coronary artery disease is commonly achieved by percutaneous coronary intervention with stent deployment. Refinement in interventional techniques, major improvements in stent design (particularly drug-eluting stents), and adjunctive pharmacotherapy with dual antiplatelet regimens have led to marked reductions in the overall rates of stent failure. However, even with the advancements made in the latest generation of drug-eluting stents, unresolved biological problems persist including delayed re-endothelialization and neoatherosclerosis, which can promote late expansion of the neointima and late stent thrombosis. Novel strategies are still needed beyond what is currently available to specifically address the pathobiological processes that underpin the residual risk for adverse clinical events. This review focuses on the emerging evidence that HDL (high-density lipoproteins) and its main apo (apolipoprotein), apoA-I, exhibit multiple vascular biological functions that are associated with an improvement in stent biocompatibility. HDL/apoA-I have recently been shown to inhibit in-stent restenosis in animal models of stenting and suppress smooth muscle cell proliferation in in vitro studies. Reconstituted HDL also promotes endothelial cell migration, endothelial progenitor cell mobilization, and re-endothelialization. Furthermore, reconstituted HDL decreases platelet activation and HDL cholesterol is inversely associated with the risk of thrombosis. Finally, reconstituted HDL/apoA-I suppresses key inflammatory mechanisms that initiate in-stent neoatherosclerosis and can efflux cholesterol from plaque macrophages, an important function of HDLs that prevents plaque progression. These unique multifunctional effects of HDL/apoA-I suggest that, if translated appropriately, have the potential to improve stent biocompatibility. This may provide an alternate and more efficacious therapeutic pathway for the translation of HDL.
由于冠状动脉疾病而进行的血运重建通常通过经皮冠状动脉介入治疗和支架置入来实现。介入技术的改进、支架设计的重大改进(特别是药物洗脱支架)以及双重抗血小板治疗方案的辅助药物治疗,导致支架失败的总体发生率显著降低。然而,即使在最新一代药物洗脱支架中取得了进展,仍存在未解决的生物学问题,包括延迟再内皮化和新动脉粥样硬化,这可能导致新生内膜的晚期扩张和晚期支架血栓形成。除了目前可用的方法之外,还需要新的策略来专门解决支撑不良临床事件残留风险的病理生物学过程。这篇综述重点介绍了新兴证据,即高密度脂蛋白(HDL)及其主要载脂蛋白(载脂蛋白 A-I)具有多种血管生物学功能,与改善支架生物相容性有关。最近的研究表明,HDL/apoA-I 可抑制支架动物模型中的支架内再狭窄,并抑制体外研究中的平滑肌细胞增殖。重建的 HDL 还可促进内皮细胞迁移、内皮祖细胞动员和再内皮化。此外,重建的 HDL 可减少血小板激活,而 HDL 胆固醇与血栓形成风险呈负相关。最后,重建的 HDL/apoA-I 可抑制引发支架内新生动脉粥样硬化的关键炎症机制,并可从斑块巨噬细胞中排出胆固醇,这是 HDL 的一个重要功能,可以防止斑块进展。HDL/apoA-I 的这些独特的多功能作用表明,如果适当转化,有可能改善支架的生物相容性。这可能为 HDL 的转化提供一种替代的、更有效的治疗途径。