Suppr超能文献

半胱氨酸丰富环境中铜的异常还原机制。

Unusual Reduction Mechanism of Copper in Cysteine-Rich Environment.

机构信息

LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia , Universidade Nova de Lisboa , 2829-516 Caparica , Portugal.

出版信息

Inorg Chem. 2018 Jul 16;57(14):8078-8088. doi: 10.1021/acs.inorgchem.8b00121. Epub 2018 Jun 29.

Abstract

Copper-cysteine interactions play an important role in Biology and herein we used the copper-substituted rubredoxin (Cu-Rd) from Desulfovibrio gigas to gain further insights into the copper-cysteine redox chemistry. EPR spectroscopy results are consistent with Cu-Rd harboring a Cu center in a sulfur-rich coordination, in a distorted tetrahedral structure ( g = 2.183 and 2.032 and A = 76.4 × 10 and 12 × 10 cm). In Cu-Rd, two oxidation states at Cu-center (Cu and Cu) are associated with Cys oxidation-reduction, alternating in the redox cycle, as pointed by electrochemical studies that suggest internal geometry rearrangements associated with the electron transfer processes. The midpoint potential of [Cu(S-Cys)(Cys-S-S-Cys)]/[Cu(S-Cys)] redox couple was found to be -0.15 V vs NHE showing a large separation of cathodic and anodic peaks potential (Δ E = 0.575 V). Interestingly, sulfur-rich Cu-Rd is highly stable under argon in dark conditions, which is thermodynamically unfavorable to Cu-thiol autoreduction. The reduction of copper and concomitant oxidation of Cys can both undergo two possible pathways: oxidative as well as photochemical. Under O, Cu plays the role of the electron carrier from one Cys to O followed by internal geometry rearrangement at the Cu site, which facilitates reduction at Cu-center to yield Cu(S-Cys)(Cys-S-S-Cys). Photoinduced (irradiated at λ = 280 nm) reduction of the Cu center is observed by UV-visible photolysis (above 300 nm all bands disappeared) and tryptophan fluorescence (∼335 nm peak enhanced) experiments. In both pathways, geometry reorganization plays an important role in copper reduction yielding an energetically compatible donor-acceptor system. This model system provides unusual stability and redox chemistry rather than the universal Cu-thiol auto redox chemistry in cysteine-rich copper complexes.

摘要

铜-半胱氨酸相互作用在生物学中起着重要作用,在此我们使用来自脱硫弧菌的铜取代的 rubredoxin(Cu-Rd)来深入了解铜-半胱氨酸氧化还原化学。EPR 光谱结果表明,Cu-Rd 含有一个在富含硫的配位环境中的 Cu 中心,呈扭曲的四面体结构(g = 2.183 和 2.032,A = 76.4×10 和 12×10 cm)。在 Cu-Rd 中,Cu 中心的两个氧化态(Cu 和 Cu)与 Cys 的氧化还原有关,在氧化还原循环中交替出现,这一点通过电化学研究得到了证实,这些研究表明电子转移过程与内部几何结构的重排有关。[Cu(S-Cys)(Cys-S-S-Cys)]/[Cu(S-Cys)]氧化还原对的中点电位为-0.15 V 对 NHE,表明阴极和阳极峰电位(ΔE = 0.575 V)之间有很大的分离。有趣的是,富含硫的 Cu-Rd 在黑暗条件下在氩气中非常稳定,这从热力学上不利于 Cu-硫醇自还原。铜的还原和随之而来的 Cys 的氧化都可以通过两种可能的途径进行:氧化和光化学。在 O 存在下,Cu 作为电子载体从一个 Cys 传递到 O,随后在 Cu 位发生内部几何重排,这有利于在 Cu 中心还原生成 Cu(S-Cys)(Cys-S-S-Cys)。通过紫外可见光解(波长大于 300nm 时所有谱带均消失)和色氨酸荧光(~335nm 峰增强)实验观察到 Cu 中心的光诱导(用 λ = 280nm 照射)还原。在这两种途径中,几何重排在铜还原中起着重要作用,产生了一个能量上相容的供体-受体体系。这种模型体系提供了不寻常的稳定性和氧化还原化学性质,而不是富含半胱氨酸的铜配合物中的普遍的 Cu-硫醇自动氧化还原化学性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验