Suppr超能文献

Surface charge of mammalian neurones as revealed by microelectrophoresis.

作者信息

Mironov S L, Dolgaya E V

出版信息

J Membr Biol. 1985;86(3):197-202. doi: 10.1007/BF01870598.

Abstract

The surface charge of isolated rat dorsal root ganglion neurones was studied by microelectrophoresis technique. The increase of Ca concentration caused greater reduction of the electrophoretic mobility compared to that produced by an equivalent amount of divalent organic cations, dimethonium or hexamethonium. No charge reversal for Ca concentrations up to 80 mM was observed. These data fit the suggestion that two anion groups of the outer membrane surface can bind one Ca ion with apparent binding constant of about 50 M-1. In solutions of low pH the electrophoretic mobility of cells decreased corresponding to titration of acidic groups with apparent pK = 4.2. Trypsin treatment in mild conditions markedly reduced the surface charge; however, neuraminidase and hyaluronidase did not change it. N-bromosuccinimide (a specific reagent for carboxylic groups of proteins) decreased the electrophoretic mobility about 60%. However, no increase of the surface charge after the action of specific reagents for amino groups (2,4,6-trinitrobenzene-sulfonic acid and maleic anhydride) was observed. It was shown that the surface charge depends also on the intracellular metabolism. If 1 mM dibutyryl cAMP or theophilline was added to the culture medium (thus, raising the concentration of cAMP inside the cell) the surface charge increased. This effect developed slowly and reached its maximum on the third day of incubation. Treatment of cells by 5 mM tolbutamide (an inhibitor of some protein kinases) did not change cell mobility. Addition of 5 mM N-ethylmaleimide (an inhibitor of adenylate cyclase) to the culture medium produced some decrease of the surface charge.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验