Suppr超能文献

电化学控制的固体电解质相界层可实现优异的锂硫电池。

Electrochemically Controlled Solid Electrolyte Interphase Layers Enable Superior Li-S Batteries.

机构信息

Graduate School of Nanoscience and Technology , KAIST , Daejeon 305-701 , South Korea.

出版信息

ACS Appl Mater Interfaces. 2018 Jul 25;10(29):24554-24563. doi: 10.1021/acsami.8b07248. Epub 2018 Jul 10.

Abstract

Lithium-sulfur (Li-S) batteries suffer from shuttle reactions during electrochemical cycling, which cause the loss of active material sulfur from sulfur-carbon cathodes, and simultaneously incur the corrosion and degradation of the lithium metal anode by forming passivation layers on its surface. These unwanted reactions therefore lead to the fast failure of batteries. The preservation of the highly reactive lithium metal anode in sulfur-containing electrolytes has been one of the main challenges for Li-S batteries. In this study, we systematically controlled and optimized the formation of a smooth and uniform solid electrolyte interphase (SEI) layer through electrochemical pretreatment of the Li metal anode under controlled current densities. A distinct improvement of battery performance in terms of specific capacity and power capability was achieved in charge-discharge cycling for Li-S cells with pretreated Li anodes compared to pristine untreated ones. Importantly, at a higher power density (1 C rate, 3 mA cm), the Li-S cells with pretreated Li anodes protected by a controlled elastomer (Li-Protected-by-Elastomer, LPE)) show the suppression of the Li dendrite growth and exhibit 3-4 times higher specific capacity than the untreated ones after 100 electrochemical cycles. The formation of such a controlled uniform SEI was confirmed, and its surface chemistry, morphology, and electrochemical properties were characterized by X-ray photoelectron spectroscopy, focused-ion beam cross sectioning, and scanning electron microscopy. Adequate pretreatment current density and time are critical in order to form a continuous and uniform SEI, along with good Li-ion transport property.

摘要

锂硫(Li-S)电池在电化学循环过程中会发生穿梭反应,这会导致硫-碳阴极中的活性材料硫流失,同时在锂金属阳极表面形成钝化层,从而腐蚀和降解锂金属阳极。这些不需要的反应因此导致电池快速失效。在含硫电解液中保存高反应性的锂金属阳极是 Li-S 电池的主要挑战之一。在这项研究中,我们通过在受控电流密度下对锂金属阳极进行电化学预处理,系统地控制和优化了光滑均匀的固体电解质界面(SEI)层的形成。与未经预处理的原始电池相比,经过预处理的锂阳极的 Li-S 电池在充放电循环中的比容量和功率能力方面表现出明显的改善。重要的是,在更高的功率密度(1 C 率,3 mA cm)下,用受控弹性体(Li-Protected-by-Elastomer,LPE)保护的经过预处理的锂阳极的 Li-S 电池抑制了锂枝晶的生长,并且在 100 次电化学循环后,其比容量比未经处理的电池高 3-4 倍。通过 X 射线光电子能谱、聚焦离子束截面和扫描电子显微镜证实了这种控制均匀 SEI 的形成,并对其表面化学、形态和电化学性质进行了表征。为了形成连续均匀的 SEI 以及良好的锂离子传输性能,适当的预处理电流密度和时间是至关重要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验