CNRS, Aix Marseille Univ, Centrale Marseille, IRPHE, Marseille, 13013, France.
Princeton Center for Theoretical Science, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2018 Jun 15;120(24):244505. doi: 10.1103/PhysRevLett.120.244505.
We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales much longer than the waves' period. Our results demonstrate for the first time that the three-scale dynamics due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of the turbulent motions.
我们通过直接数值模拟证明,周期性的、振荡的平均流会自发地从湍流产生的内波中发展出来。我们考虑了一个最小的物理模型,其中流体在靠近稳定分层的对流层中自组织。内波是由湍流对流运动激发的,然后非线性相互作用,产生在比波的周期长得多的时间尺度上反转的平均流。我们的结果首次表明,由于对流、波和平均流的三尺度动力学是普遍存在的,因此它可能发生在许多天体物理和地球物理流体中。我们讨论了在简化模型中再现平均流的努力,其中湍流被绕过。我们证明了,由于对流的混沌性质而产生的波间歇性,在平均流动力学中起着关键作用,因此仅使用湍流运动的二阶统计量是无法捕捉到的。