Suppr超能文献

脑脓肿的纳米级力学:一项原子力显微镜研究。

Nanoscale mechanics of brain abscess: An atomic force microscopy study.

作者信息

Minelli Eleonora, Sassun Tanya Enny, Papi Massimiliano, Palmieri Valentina, Palermo Francesca, Perini Giordano, Antonelli Manila, Gianno Francesca, Maulucci Giuseppe, Ciasca Gabriele, De Spirito Marco

机构信息

Physics Institute, Catholic University of Sacred Heart, Largo F. Vito, 1, Rome, 00168, Italy.

Department of Neurology and Psychiatry, Division of Neurosurgery, Policlinico Umberto I, Sapienza University, Viale del Policlinico, 155, Rome, 00161, Italy.

出版信息

Micron. 2018 Oct;113:34-40. doi: 10.1016/j.micron.2018.06.012. Epub 2018 Jun 20.

Abstract

Mechanical stimuli are a fundamental player in the pathophysiology of the brain influencing its physiological development and contributing to the onset and progression of many diseases. In some pathological states, the involvement of mechanical and physical stimuli might be extremely subtle; in others, it is more evident and particularly relevant. Among the latter pathologies, one of the most serious life-threatening condition is the brain abscess (BA), a focal infection localized in the brain parenchyma, which causes large brain mechanical deformations, giving rise to a wide range of neurological impairments. In this paper, we present the first nano-mechanical characterization of surgically removed human brain abscess tissues by means of atomic force microscopy (AFM) in the spectroscopy mode. Consistently with previous histological findings, we modeled the brain abscess as a multilayered structure, composed of three main layers: the cerebritis layer, the collagen capsule, and the internal inflammatory border. We probed the viscoelastic behavior of each layer separately through the measure of the apparent Young's modulus (E), that gives information about the sample stiffness, and the AFM hysteresis (H), that estimates the contribution of viscous and dissipative forces. Our experimental findings provide a full mechanical characterization of the abscess, showing an average E of (94 ± 5) kPa and H of 0.37 ± 0.01 for the cerebritis layer, an average E = (1.04 ± 0.05) MPa and H = 0.10 ± 0.01 for the collagen capsule and an average E = (9.8 ± 0.4) kPa and H = 0.57 ± 0.01 for the internal border. The results here presented have the potential to contribute to the development of novel surgical instruments dedicated to the treatment of the pathology and to stimulate the implementation of novel constitutive mechanical models for the estimation of brain compression and damage during BA progression.

摘要

机械刺激是大脑病理生理学中的一个基本因素,影响其生理发育,并促成多种疾病的发生和发展。在某些病理状态下,机械和物理刺激的参与可能极其细微;而在其他情况下,则更为明显且尤为重要。在后一类病症中,最严重的危及生命的情况之一是脑脓肿(BA),这是一种位于脑实质的局灶性感染,会导致大脑发生巨大的机械变形,引发广泛的神经功能障碍。在本文中,我们首次通过光谱模式下的原子力显微镜(AFM)对手术切除的人脑脓肿组织进行了纳米力学表征。与先前的组织学研究结果一致,我们将脑脓肿建模为多层结构,由三个主要层组成:脑炎层、胶原包膜和内部炎症边界。我们通过测量表观杨氏模量(E)来分别探测各层的粘弹性行为,表观杨氏模量可提供有关样品刚度的信息,还通过测量AFM滞后(H)来估计粘性和耗散力的贡献。我们的实验结果提供了脓肿的完整力学表征,显示脑炎层的平均E为(94±5)kPa,H为0.37±0.01;胶原包膜的平均E =(1.04±0.05)MPa,H = 0.10±0.01;内部边界的平均E =(9.8±0.4)kPa,H = 0.57±0.01。本文呈现的结果有可能有助于开发专门用于治疗该病症的新型手术器械,并推动实施新的本构力学模型,以估计脑脓肿进展过程中的脑压迫和损伤情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验