Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , Maryland 20892 , United States.
Mathematical and Statistical Computing Laboratory, Division for Computational Bioscience, Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States.
J Phys Chem B. 2018 Dec 13;122(49):10996-11001. doi: 10.1021/acs.jpcb.8b04371. Epub 2018 Jun 29.
This study focuses on how interactions of solute molecules affect the concentration dependence of their flux through narrow membrane channels. It is assumed that the molecules cannot bypass each other because of their hard-core repulsion. In addition, other short- and long-range solute-solute interactions are included into consideration. These interactions make it impossible to develop an analytical theory for the flux in the framework of a diffusion model of solute dynamics in the channel. To overcome this difficulty, we course-grain the diffusion model by mapping it onto a two-site one, where the rate constants describing the solute dynamics are expressed in terms of the parameters of the initial diffusion model. This allows us (i) to find an analytical solution for the flux as a function of the solute concentration and (ii) to characterize the solute-solute interactions by two dimensionless parameters. Such a characterization proves to be very informative as it results in a clear classification of the effects of the solute-solute interactions on the concentration dependence of the flux. Unexpectedly, this dependence can be nonmonotonic, exhibiting a sharp maximum in a certain parameter range. We hypothesize that such a behavior may constitute an element of a regulatory mechanism, wherein maximal flux reports on the optimal solute concentration in the bulk near the channel entrance.
本研究关注溶质分子相互作用如何影响它们通过狭窄膜通道的通量对浓度的依赖性。假设由于溶质分子的硬球斥力,它们不能相互超越。此外,还考虑了其他短程和长程的溶质-溶质相互作用。这些相互作用使得在通道中溶质动力学的扩散模型框架内为通量开发分析理论变得不可能。为了克服这个困难,我们通过将扩散模型映射到一个两站点模型来简化它,其中描述溶质动力学的速率常数用初始扩散模型的参数表示。这使我们能够 (i) 找到通量作为溶质浓度函数的解析解,以及 (ii) 通过两个无量纲参数来描述溶质-溶质相互作用。这种表征非常有信息量,因为它导致了对溶质-溶质相互作用对通量浓度依赖性影响的明确分类。出乎意料的是,这种依赖性可能是非单调的,在某个参数范围内表现出明显的最大值。我们假设这种行为可能是调节机制的一个组成部分,其中最大通量报告了通道入口附近主体中最佳溶质浓度。