Suppr超能文献

将相互作用分子的通道内扩散动力学映射到双位点模型上:在流浓度依赖性中的转变。

Mapping Intrachannel Diffusive Dynamics of Interacting Molecules onto a Two-Site Model: Crossover in Flux Concentration Dependence.

机构信息

Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , Maryland 20892 , United States.

Mathematical and Statistical Computing Laboratory, Division for Computational Bioscience, Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States.

出版信息

J Phys Chem B. 2018 Dec 13;122(49):10996-11001. doi: 10.1021/acs.jpcb.8b04371. Epub 2018 Jun 29.

Abstract

This study focuses on how interactions of solute molecules affect the concentration dependence of their flux through narrow membrane channels. It is assumed that the molecules cannot bypass each other because of their hard-core repulsion. In addition, other short- and long-range solute-solute interactions are included into consideration. These interactions make it impossible to develop an analytical theory for the flux in the framework of a diffusion model of solute dynamics in the channel. To overcome this difficulty, we course-grain the diffusion model by mapping it onto a two-site one, where the rate constants describing the solute dynamics are expressed in terms of the parameters of the initial diffusion model. This allows us (i) to find an analytical solution for the flux as a function of the solute concentration and (ii) to characterize the solute-solute interactions by two dimensionless parameters. Such a characterization proves to be very informative as it results in a clear classification of the effects of the solute-solute interactions on the concentration dependence of the flux. Unexpectedly, this dependence can be nonmonotonic, exhibiting a sharp maximum in a certain parameter range. We hypothesize that such a behavior may constitute an element of a regulatory mechanism, wherein maximal flux reports on the optimal solute concentration in the bulk near the channel entrance.

摘要

本研究关注溶质分子相互作用如何影响它们通过狭窄膜通道的通量对浓度的依赖性。假设由于溶质分子的硬球斥力,它们不能相互超越。此外,还考虑了其他短程和长程的溶质-溶质相互作用。这些相互作用使得在通道中溶质动力学的扩散模型框架内为通量开发分析理论变得不可能。为了克服这个困难,我们通过将扩散模型映射到一个两站点模型来简化它,其中描述溶质动力学的速率常数用初始扩散模型的参数表示。这使我们能够 (i) 找到通量作为溶质浓度函数的解析解,以及 (ii) 通过两个无量纲参数来描述溶质-溶质相互作用。这种表征非常有信息量,因为它导致了对溶质-溶质相互作用对通量浓度依赖性影响的明确分类。出乎意料的是,这种依赖性可能是非单调的,在某个参数范围内表现出明显的最大值。我们假设这种行为可能是调节机制的一个组成部分,其中最大通量报告了通道入口附近主体中最佳溶质浓度。

相似文献

3
Single-file diffusion near channel boundaries.通道边界附近的单分子扩散。
Langmuir. 2006 Jun 20;22(13):5728-33. doi: 10.1021/la060378w.
4
Calculating Single-Channel Permeability and Conductance from Transition Paths.从跃迁路径计算单通道渗透率和电导。
J Chem Inf Model. 2019 Feb 25;59(2):777-785. doi: 10.1021/acs.jcim.8b00914. Epub 2019 Feb 13.
10
Channel-facilitated diffusion boosted by particle binding at the channel entrance.通道入口处的粒子结合促进通道介导的扩散。
Phys Rev Lett. 2014 Jul 25;113(4):048102. doi: 10.1103/PhysRevLett.113.048102. Epub 2014 Jul 23.

本文引用的文献

2
Real-Time Nanopore-Based Recognition of Protein Translocation Success.基于实时纳米孔的蛋白质转位成功识别。
Biophys J. 2018 Feb 27;114(4):772-776. doi: 10.1016/j.bpj.2017.12.019. Epub 2018 Jan 12.
3
Brownian motion in confined geometries.受限几何结构中的布朗运动。
Eur Phys J Spec Top. 2014 Dec;223(14):3021-3025. doi: 10.1140/epjst/e2014-02316-6. Epub 2014 Dec 15.
4
Membrane pores: from structure and assembly, to medicine and technology.膜孔:从结构与组装到医学与技术
Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0208.
7
On the applicability of entropy potentials in transport problems.关于熵势在输运问题中的适用性。
Eur Phys J Spec Top. 2014 Dec;223(14):3063-3077. doi: 10.1140/epjst/e2014-02319-3.
8
Cooperative transport in nanochannels.纳米通道中的协同运输
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):010703. doi: 10.1103/PhysRevE.88.010703. Epub 2013 Jul 8.
9
Cooperative binding.协同结合。
PLoS Comput Biol. 2013;9(6):e1003106. doi: 10.1371/journal.pcbi.1003106. Epub 2013 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验