Suppr超能文献

可见及近红外高光谱成像技术探测桑树叶部幼虫及为害的潜力。

Potential of Visible and Near-Infrared Hyperspectral Imaging for Detection of Larvae and Damage on Mulberry Leaves.

机构信息

College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.

South Taihu Agricultural Technology Extension Center in Huzhou, Zhejiang University, Huzhou 313000, China.

出版信息

Sensors (Basel). 2018 Jun 28;18(7):2077. doi: 10.3390/s18072077.

Abstract

Mulberry trees are an important crop for sericulture. Pests can affect the yield and quality of mulberry leaves. This study aims to develop a hyperspectral imaging system in visible and near-infrared (NIR) region (400⁻1700 nm) for the rapid identification of larvae and its damage. The extracted spectra of five region of interests (ROI), namely leaf vein, healthy mesophyll, slight damage, serious damage, and larva at 400⁻1000 nm (visible range) and 900⁻1700 nm (NIR range), were used to establish a partial least squares discriminant analysis (PLS-DA) and least-squares support vector machines (LS-SVM) models. Successive projections algorithm (SPA), uninformation variable elimination (UVE), UVE-SPA, and competitive adaptive reweighted sampling were used for variable selection. The best models in distinguishing between leaf vein, healthy mesophyll, slight damage and serious damage, leaf vein, healthy mesophyll, and larva, slight damage, serious damage, and larva were all the SPA-LS-SVM models, based on the NIR range data, and their correct rate of prediction (CRP) were all 100.00%. The best model for the identification of all five ROIs was the UVE-SPA-LS-SVM model, based on visible range data, which had the CRP value of 97.30%. In summary, visible and near infrared hyperspectral imaging could distinguish larvae and their damage from leaf vein and healthy mesophyll in a rapid and non-destructive way.

摘要

桑树是养蚕业的重要作物。害虫会影响桑叶的产量和质量。本研究旨在开发一种可见近红外(400⁻1700nm)高光谱成像系统,用于快速识别幼虫及其损伤。提取了五个感兴趣区域(ROI)的光谱,即叶脉、健康叶肉、轻度损伤、重度损伤和幼虫,在 400⁻1000nm(可见范围)和 900⁻1700nm(近红外范围),用于建立偏最小二乘判别分析(PLS-DA)和最小二乘支持向量机(LS-SVM)模型。连续投影算法(SPA)、无信息变量消除(UVE)、UVE-SPA 和竞争自适应重加权采样用于变量选择。在区分叶脉、健康叶肉、轻度损伤和重度损伤、叶脉、健康叶肉和幼虫、轻度损伤、重度损伤和幼虫方面,最佳模型均为基于近红外范围数据的 SPA-LS-SVM 模型,其预测正确率(CRP)均为 100.00%。基于可见范围数据,用于识别所有五个 ROI 的最佳模型是 UVE-SPA-LS-SVM 模型,其 CRP 值为 97.30%。总之,可见和近红外高光谱成像可以快速无损地区分幼虫及其损伤与叶脉和健康叶肉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fe9/6068755/64be4ac56d07/sensors-18-02077-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验