Suppr超能文献

改进网络推断:关于存在或不存在链接的假阳性和假阴性结论的影响。

Improving network inference: The impact of false positive and false negative conclusions about the presence or absence of links.

机构信息

Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Meston Building, Meston Walk, Aberdeen AB24 3UE, United Kingdom; Institute of Physics and Astronomy, University of Potsdam, Campus Golm, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany.

Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Meston Building, Meston Walk, Aberdeen AB24 3UE, United Kingdom.

出版信息

J Neurosci Methods. 2018 Sep 1;307:31-36. doi: 10.1016/j.jneumeth.2018.06.011. Epub 2018 Jun 26.

Abstract

BACKGROUND

A reliable inference of networks from data is of key interest in the Neurosciences. Several methods have been suggested in the literature to reliably determine links in a network. To decide about the presence of links, these techniques rely on statistical inference, typically controlling the number of false positives, paying little attention to false negatives.

NEW METHOD

In this paper, by means of a comprehensive simulation study, we analyse the influence of false positive and false negative conclusions about the presence or absence of links in a network on the network topology. We show that different values to balance false positive and false negative conclusions about links should be used in order to reliably estimate network characteristics. We propose to run careful simulation studies prior to making potentially erroneous conclusion about the network topology.

RESULTS

Our analysis shows that optimal values to balance false positive and false negative conclusions about links depend on the network topology and characteristic of interest.

COMPARISON WITH EXISTING METHODS

Existing methods rely on a choice of the rate for false positive conclusions. They aim to be sure about individual links rather than the entire network. The rate of false negative conclusions is typically not investigated.

CONCLUSIONS

Our investigation shows that the balance of false positive and false negative conclusions about links in a network has to be tuned for any network topology that is to be estimated. Moreover, within the same network topology, the results are qualitatively the same for each network characteristic, but the actual values leading to reliable estimates of the characteristics are different.

摘要

背景

从数据中可靠地推断网络是神经科学的关键。文献中已经提出了几种方法来可靠地确定网络中的链接。为了确定链接的存在,这些技术依赖于统计推断,通常控制假阳性的数量,而很少关注假阴性。

新方法

在本文中,通过全面的模拟研究,我们分析了网络中存在或不存在链接的假阳性和假阴性结论对网络拓扑结构的影响。我们表明,为了可靠地估计网络特征,应该使用不同的值来平衡假阳性和假阴性的链接结论。我们建议在对网络拓扑结构做出潜在错误结论之前,进行仔细的模拟研究。

结果

我们的分析表明,平衡网络中链接的假阳性和假阴性结论的最佳值取决于网络拓扑和感兴趣的特征。

与现有方法的比较

现有的方法依赖于假阳性结论的速率选择。它们旨在确定单个链接的准确性,而不是整个网络。假阴性结论的速率通常不会被调查。

结论

我们的研究表明,对于任何要估计的网络拓扑,都必须针对网络中链接的假阳性和假阴性结论进行调整。此外,在相同的网络拓扑中,对于每个网络特征,结果在质量上是相同的,但导致特征可靠估计的实际值是不同的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验