Suppr超能文献

采后供应链中的微生物旅行者:从农场到零售的微生物模拟和可视化框架。

Postharvest Supply Chain with Microbial Travelers: a Farm-to-Retail Microbial Simulation and Visualization Framework.

机构信息

Department of Food Science, Cornell University, Ithaca, New York, USA

Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.

出版信息

Appl Environ Microbiol. 2018 Aug 17;84(17). doi: 10.1128/AEM.00813-18. Print 2018 Sep 1.

Abstract

Fresh produce supply chains present variable and diverse conditions that are relevant to food quality and safety because they may favor microbial growth and survival following contamination. This study presents the development of a simulation and visualization framework to model microbial dynamics on fresh produce moving through postharvest supply chain processes. The postharvest supply chain with microbial travelers (PSCMT) tool provides a modular process modeling approach and graphical user interface to visualize microbial populations and evaluate practices specific to any fresh produce supply chain. The resulting modeling tool was validated with empirical data from an observed tomato supply chain from Mexico to the United States, including the packinghouse, distribution center, and supermarket locations, as an illustrative case study. Due to data limitations, a model-fitting exercise was conducted to demonstrate the calibration of model parameter ranges for microbial indicator populations, i.e., mesophilic aerobic microorganisms (quantified by aerobic plate count and here termed APC) and total coliforms (TC). Exploration and analysis of the parameter space refined appropriate parameter ranges and revealed influential parameters for supermarket indicator microorganism levels on tomatoes. Partial rank correlation coefficient analysis determined that APC levels in supermarkets were most influenced by removal due to spray water washing and microbial growth on the tomato surface at postharvest locations, while TC levels were most influenced by growth on the tomato surface at postharvest locations. Overall, this detailed mechanistic dynamic model of microbial behavior is a unique modeling tool that complements empirical data and visualizes how postharvest supply chain practices influence the fate of microbial contamination on fresh produce. Preventing the contamination of fresh produce with foodborne pathogens present in the environment during production and postharvest handling is an important food safety goal. Since studying foodborne pathogens in the environment is a complex and costly endeavor, computer simulation models can help to understand and visualize microorganism behavior resulting from supply chain activities. The postharvest supply chain with microbial travelers (PSCMT) model, presented here, provides a unique tool for postharvest supply chain simulations to evaluate microbial contamination. The tool was validated through modeling an observed tomato supply chain. Visualization of dynamic contamination levels from harvest to the supermarket and analysis of the model parameters highlighted critical points where intervention may prevent microbial levels sufficient to cause foodborne illness. The PSCMT model framework and simulation results support ongoing postharvest research and interventions to improve understanding and control of fresh produce contamination.

摘要

新鲜农产品供应链存在多变和多样化的条件,这些条件与食品质量和安全有关,因为它们可能有利于微生物在受到污染后生长和存活。本研究提出了一种模拟和可视化框架的开发,以模拟新鲜农产品在收获后供应链过程中移动时的微生物动态。带有微生物旅行者的收获后供应链(PSCMT)工具提供了一种模块化的过程建模方法和图形用户界面,用于可视化微生物种群,并评估特定于任何新鲜农产品供应链的实践。该建模工具使用从墨西哥到美国的观察到的番茄供应链的经验数据进行了验证,包括包装厂、配送中心和超市位置,作为一个说明性案例研究。由于数据限制,进行了模型拟合练习,以演示微生物指示种群模型参数范围的校准,即嗜温需氧微生物(通过需氧平板计数量化,此处称为 APC)和总大肠菌群(TC)。对参数空间的探索和分析细化了适当的参数范围,并揭示了影响番茄超市指示微生物水平的参数。偏秩相关系数分析确定,超市中 APC 水平受收获后位置的喷雾水清洗和番茄表面微生物生长导致的去除的影响最大,而 TC 水平受收获后位置的番茄表面生长的影响最大。总的来说,这种对微生物行为的详细机制动态模型是一种独特的建模工具,它补充了经验数据,并可视化了收获后供应链实践如何影响新鲜农产品上微生物污染的命运。防止在生产和收获后处理过程中环境中存在的食源性病原体污染新鲜农产品是一个重要的食品安全目标。由于研究环境中的食源性病原体是一项复杂且昂贵的工作,因此计算机模拟模型可以帮助理解和可视化供应链活动导致的微生物行为。这里提出的带有微生物旅行者的收获后供应链(PSCMT)模型为收获后供应链模拟提供了一种独特的工具,以评估微生物污染。该工具通过对观察到的番茄供应链进行建模进行了验证。从收获到超市的动态污染水平的可视化和模型参数的分析突出了可能阻止足以引起食源性疾病的微生物水平的关键控制点。PSCMT 模型框架和模拟结果支持正在进行的收获后研究和干预措施,以提高对新鲜农产品污染的理解和控制。

相似文献

本文引用的文献

8
A strategy to establish Food Safety Model Repositories.建立食品安全模型知识库的策略。
Int J Food Microbiol. 2015 Jul 2;204:81-90. doi: 10.1016/j.ijfoodmicro.2015.03.010. Epub 2015 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验