Suppr超能文献

解码纠缠的转变:多态性和受压刚性。

Decoding entangled transitions: Polyamorphism and stressed rigidity.

机构信息

Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France.

Physique de la Matière Condensée, B5, Université de Liège, B4000 Sart-Tilman, Belgium.

出版信息

J Chem Phys. 2018 Jun 28;148(24):244505. doi: 10.1063/1.5034500.

Abstract

There is much to learn from simulation studies of polyamorphism achieved for systems with different bonding environments. Chalcogenide glasses such as Ge-Se glasses undergo an elastic phase transition involving important changes in network connectivity. Stimulated by recent developments of topological constraint theory, we show that the concept of rigidity can be extended to a broader range of thermodynamic conditions including densified glasses. After having validated our structural first principles molecular dynamics models with experimental data over a broad pressure range for GeSe, we show that the onset of polyamorphism is strongly related to the constraint density measuring the degree of rigidity of the network backbone, while voids and cavities in the structure collapse at very small pressures. This leads to the identification that the progressive onset of higher coordinated species typical of high pressure phases is responsible for the onset of stressed rigidity, although the constraint analysis also indicates progressive stiffening of bonding angles. Results are compared to stoichiometric and stressed rigid GeSe and to isostatic AsSe and then generalized to other compositions in the Ge-Se binary under pressure.

摘要

从不同键合环境体系的多晶型模拟研究中可以学到很多东西。硫属玻璃如 Ge-Se 玻璃经历涉及网络连接性重要变化的弹性相变。受拓扑约束理论的最新发展的启发,我们表明,刚性的概念可以扩展到更广泛的热力学条件,包括致密化玻璃。在用实验数据验证了我们的结构第一性原理分子动力学模型在 GeSe 的宽压力范围内之后,我们表明,多晶型的出现与约束密度密切相关,约束密度衡量网络骨架的刚性程度,而结构中的空隙和空腔在非常小的压力下坍塌。这导致了这样的识别,即典型的高压相的更高配位物种的逐渐出现是压力下刚性应力的起因,尽管约束分析也表明键角逐渐变硬。结果与化学计量和受应力的刚性 GeSe 以及等静压的 AsSe 进行了比较,然后推广到压力下 Ge-Se 二元中的其他成分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验