Lotfi Nastaran, Darooneh Amir Hossein, Rodrigues Francisco A
University of Zanjan, 45371-38791 Zanjan, Iran.
Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil.
Chaos. 2018 Jun;28(6):063113. doi: 10.1063/1.5001469.
Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.
地震时间序列已被映射为一个复杂网络,其中一个地理区域被划分为代表节点的方形单元格,并根据地震序列定义连接。在本文中,我们将地震时间序列映射到一个由多层网络描述的时间网络,并根据特征向量中心性度量来刻画网络结构的演化。我们推广了之前考虑地震网络单层表示的工作。我们的结果表明,与基于单层网络的方法相比,多层表示能更好地捕捉地震活动。我们还验证了可以从网络中心性分析中识别出伊朗和加利福尼亚地震活动最频繁的地区。这里提供的地震数据的时间建模可能为更好地理解地震物理学开辟新的可能性。