Suppr超能文献

地震多重网络中的中心性

Centrality in earthquake multiplex networks.

作者信息

Lotfi Nastaran, Darooneh Amir Hossein, Rodrigues Francisco A

机构信息

University of Zanjan, 45371-38791 Zanjan, Iran.

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, 13560-970 São Carlos, SP, Brazil.

出版信息

Chaos. 2018 Jun;28(6):063113. doi: 10.1063/1.5001469.

Abstract

Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

摘要

地震时间序列已被映射为一个复杂网络,其中一个地理区域被划分为代表节点的方形单元格,并根据地震序列定义连接。在本文中,我们将地震时间序列映射到一个由多层网络描述的时间网络,并根据特征向量中心性度量来刻画网络结构的演化。我们推广了之前考虑地震网络单层表示的工作。我们的结果表明,与基于单层网络的方法相比,多层表示能更好地捕捉地震活动。我们还验证了可以从网络中心性分析中识别出伊朗和加利福尼亚地震活动最频繁的地区。这里提供的地震数据的时间建模可能为更好地理解地震物理学开辟新的可能性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验