Suppr超能文献

用于时域近场声全息重建瞬态源的稀疏正则化方法

Sparse regularization for reconstructing transient sources with time domain nearfield acoustical holography.

作者信息

Attendu Jean-Michel, Ross Annie

机构信息

Mechanical Engineering Department, Polytechnique Montreal, Montreal, QC, H3T1J4, Canada.

出版信息

J Acoust Soc Am. 2018 Jun;143(6):3796. doi: 10.1121/1.5043088.

Abstract

In this paper, the ℓ-norm sparse regularization method is applied to the time domain reconstruction of transient acoustic fields such as impulse noise. This method properly reconstructs the back-propagated sound field where its amplitude should be null: for transient sources, this occurs mostly for positions and times that precede the arrival of the first wave front. Therefore, it significantly reduces causal errors typically found in time domain reconstruction when standard Tikhonov regularizations is applied. The reconstructions obtained from both Tikhonov and sparse regularization methods are compared using a transient baffled piston model, and show that the global root-mean-square (RMS) error is significantly reduced when using sparse regularization. The improvement provided depends on the level of sparsity of the reconstructed signal. For the studied cases, it can represent a reduction of the global RMS error by up to a factor of 3. The performance of Pareto frontier curve for predicting the optimal sparse regularization parameter is examined; it leads to accurate predictions especially for lower noise levels. Finally, sparse regularization is applied to experimental data over time and spatial domains in order to obtain an accurate reconstruction of the transient sound field produced by an impacted plate.

摘要

在本文中,ℓ范数稀疏正则化方法被应用于瞬态声场(如脉冲噪声)的时域重建。该方法能够正确地重建反向传播的声场,在该声场中其幅度应为零:对于瞬态声源,这种情况主要发生在第一个波前到达之前的位置和时间。因此,当应用标准的蒂霍诺夫正则化时,它显著减少了时域重建中通常出现的因果误差。使用瞬态障板活塞模型对从蒂霍诺夫正则化方法和稀疏正则化方法获得的重建结果进行了比较,结果表明,使用稀疏正则化时全局均方根(RMS)误差显著降低。所提供的改进取决于重建信号的稀疏程度。对于所研究的案例,它可以使全局RMS误差降低多达3倍。研究了用于预测最优稀疏正则化参数的帕累托前沿曲线的性能;它能得出准确的预测结果,尤其是对于较低噪声水平。最后,将稀疏正则化应用于时间和空间域的实验数据,以准确重建受冲击板产生的瞬态声场。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验