Suppr超能文献

QM/MM 分子动力学研究白细胞三烯 A4 水解酶的底物结合:对催化机制的启示。

QM/MM Molecular Dynamics Investigations of the Substrate Binding of Leucotriene A4 Hydrolase: Implication for the Catalytic Mechanism.

机构信息

MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry , Sichuan University , Chengdu , Sichuan , People's Republic of China 610064.

出版信息

J Phys Chem B. 2018 Jul 26;122(29):7253-7263. doi: 10.1021/acs.jpcb.8b04203. Epub 2018 Jul 12.

Abstract

LTA4H is a monozinc bifunctional enzyme which exhibits both aminopeptidase and epoxide hydrolase activities. Its dual functions in anti- and pro-inflammatory roles have attracted wide attention to the inhibitor design. In this work, we tried to construct Michaelis complexes of LTA4H with both a native peptide substrate and LTA4 molecule using combined quantum mechanics and molecular mechanics molecular dynamics simulations. First of all, the zinc ion is coordinated by H295, H299, and E318. For its aminopeptidase activity, similar to conventional peptidases, the fourth ligand to the zinc ion is suggested to be an active site water, which is further hydrogen bonded with a downstream glutamic acid, E296. For the epoxide hydrolase activity, the fourth ligand to the zinc ion is found to be an epoxy oxygen atom. The potential of mean force calculation indicates about an 8.5 kcal/mol activation barrier height for the ring-opening reaction, which will generate a metastable carbenium intermediate. Subsequent frontier molecular orbital analyses suggest that the next step would be the nucleophilic attacking reaction at the C12 atom by a water molecule activated by D375. Our simulations also analyzed functions of several important residues like R563, K565, E271, Y383, and Y378 in the binding of peptide and LTA4.

摘要

LTA4H 是一种单锌双功能酶,具有氨肽酶和环氧化物水解酶活性。其在抗炎和促炎作用中的双重功能引起了人们对抑制剂设计的广泛关注。在这项工作中,我们尝试使用量子力学和分子力学分子动力学模拟构建 LTA4H 与天然肽底物和 LTA4 分子的迈克尔复合体。首先,锌离子由 H295、H299 和 E318 配位。对于其氨肽酶活性,与传统的肽酶类似,建议锌离子的第四个配体是活性位点水,该水进一步与下游谷氨酸 E296 形成氢键。对于环氧化物水解酶活性,锌离子的第四个配体被发现是环氧氧原子。平均力势计算表明,开环反应的活化能垒约为 8.5 kcal/mol,这将生成一个亚稳的碳正离子中间体。随后的前线分子轨道分析表明,下一步将是由 D375 激活的水分子在 C12 原子上进行亲核攻击反应。我们的模拟还分析了 R563、K565、E271、Y383 和 Y378 等几个重要残基在肽和 LTA4 结合中的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验