Suppr超能文献

研究氧化石墨烯/聚苯胺增强中空纤维膜对伊维菌素在一些环境样品中预浓缩的吸附性能。

Investigation of adsorption performance of graphene oxide/polyaniline reinforced hollow fiber membrane for preconcentration of Ivermectin in some environmental samples.

机构信息

Phase Separation & FIA Lab., Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.

Phase Separation & FIA Lab., Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Nov 5;204:409-415. doi: 10.1016/j.saa.2018.06.040. Epub 2018 Jun 15.

Abstract

Herein, the application of Graphene oxide-polyaniline (GO/PANI) in one of newly hollow fiber based microextraction techniques so called (HF-S/LPME) was investigated successfully. Graphene oxide-polyaniline (GO/PANI) nanocomposite was generated via an amidation reaction in the presence of N, N'-dicyclohexylcarbodiimide (DCC), N-hydroxysuccinimide (NHS) and GO as starting material. The solid sorbent dispersed in dihexyl ether was immersed and injected into the lumen of hollow fiber. The results indicated that GO/PANI had a higher adsorption efficiency for the Ivermectin in comparison with GO and GO-ethylen diamine (GO/EDA). A Taguchi experimental design with an OAD (4) matrix was employed to optimize the affecting parameters such as pH, stirring rate, extraction time, salt addition and the volume of donor phase. Under the optimized extraction conditions, the method showed a good linear dynamic range (0.1-5000.0 ppb) with a lower limit of detection (0.03 ppb) and excellent preconcentration factor (PF = 219.88) respectively.

摘要

本文成功研究了氧化石墨烯-聚苯胺(GO/PANI)在一种新型的基于中空纤维的微萃取技术(HF-S/LPME)中的应用。通过在 N,N'-二环己基碳二亚胺(DCC)、N-羟基琥珀酰亚胺(NHS)和 GO 的存在下进行酰胺化反应,生成了氧化石墨烯-聚苯胺(GO/PANI)纳米复合材料。将分散在二己基醚中的固体吸附剂浸入并注入中空纤维的内腔。结果表明,与 GO 和 GO-乙二胺(GO/EDA)相比,GO/PANI 对伊维菌素具有更高的吸附效率。采用 OAD(4)矩阵的 Taguchi 实验设计来优化影响参数,如 pH 值、搅拌速率、萃取时间、盐添加量和供体相体积。在优化的萃取条件下,该方法表现出良好的线性动态范围(0.1-5000.0 ppb),检测限较低(0.03 ppb),浓缩因子(PF=219.88)较高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验