Suppr超能文献

间隔重要性指数用于选择相关的 ATR-FTIR 波数区间进行假药分类。

Interval importance index to select relevant ATR-FTIR wavenumber Intervals for falsified drug classification.

机构信息

Departamento de Engenharia de Produção e Transportes - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Departamento de Engenharia de Produção e Transportes - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Forense (INCT Forense), Brazil.

出版信息

J Pharm Biomed Anal. 2018 Sep 5;158:494-503. doi: 10.1016/j.jpba.2018.06.046. Epub 2018 Jun 25.

Abstract

The commerce of falsified drugs has substantially grown in recent years due to facilitated access to technologies needed for copying authentic pharmaceutical products. Attenuated Total Reflectance coupled with Fourier Transform Infrared (ATR-FTIR) spectroscopy has been successfully employed as an analytical tool to identify falsified products and support legal agents in interrupting illegal operations. ATR-FTIR spectroscopy typically yields datasets comprised of hundreds of highly correlated wavenumbers, which may compromise the performance of classical multivariate techniques used for sample classification. In this paper we propose a new wavenumber interval selection method aimed at selecting regions of spectra that best discriminate samples of seized drugs into two classes, authentic or falsified. The discriminative power of spectra regions is represented by an Interval Importance Index (III) based on the Two-Sample Kolmogorov-Smirnov test statistic, which is a novel proposition of this paper. The III guides an iterative forward approach for wavenumber selection; different data mining techniques are used for sample classification. In 100 replications using the best combination of classification technique and wavenumber intervals, we obtained average 99.87% accurate classifications on a Cialis dataset, while retaining 12.5% of the authentic wavenumbers, and average 99.43% accurate classifications on a Viagra dataset, while retaining 23.75% of the authentic wavenumbers. Our proposition was compared with alternative approaches for individual and interval wavenumber selection available in the literature, always leading to more consistent and easier to interpret results.

摘要

近年来,由于获取复制仿制药所需技术的便利性,假药交易大幅增长。衰减全反射结合傅里叶变换红外(ATR-FTIR)光谱分析已成功用作一种分析工具,用于识别假药并协助执法人员打击非法活动。ATR-FTIR 光谱通常会产生由数百个高度相关波数组成的数据集,这可能会影响用于样品分类的经典多元技术的性能。在本文中,我们提出了一种新的波数区间选择方法,旨在选择能够最佳区分两种药物(真药和假药)的光谱区域。基于双样本柯尔莫哥洛夫-斯米尔诺夫检验统计量的区间重要性指数(Interval Importance Index,III)代表了光谱区域的区分能力,这是本文的一个新提法。III 指导了一种基于迭代的波数选择方法;使用不同的数据挖掘技术进行样品分类。在使用最佳分类技术和波数区间的 100 次重复实验中,我们在 Cialis 数据集上获得了平均 99.87%的准确分类,同时保留了 12.5%的真药波数,在 Viagra 数据集上获得了平均 99.43%的准确分类,同时保留了 23.75%的真药波数。我们的方法与文献中用于个体和区间波数选择的替代方法进行了比较,结果始终更加一致且易于解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验