Suppr超能文献

最近对 microRNAs 的分子遗传学探索。

Recent Molecular Genetic Explorations of MicroRNAs.

机构信息

Program in Molecular Medicine; University of Massachusetts Medical School, Worchester, Massachusetts 01605

Department of Genetics, Harvard University, Boston, Massachusetts.

出版信息

Genetics. 2018 Jul;209(3):651-673. doi: 10.1534/genetics.118.300291.

Abstract

MicroRNAs are small, noncoding RNAs that regulate gene expression at the post-transcriptional level in essentially all aspects of biology. More than 140 genes that encode microRNAs in regulate development, behavior, metabolism, and responses to physiological and environmental changes. Genetic analysis of microRNA genes continues to enhance our fundamental understanding of how microRNAs are integrated into broader gene regulatory networks to control diverse biological processes, including growth, cell division, cell fate determination, behavior, longevity, and stress responses. As many of these microRNA sequences and the related processing machinery are conserved over nearly a billion years of animal phylogeny, the assignment of their functions via worm genetics may inform the functions of their orthologs in other animals, including humans. investigations are especially important for microRNAs because extrapolation of their functions using mRNA target prediction programs can easily assign microRNAs to incorrect genetic pathways. At this mezzanine level of microRNA bioinformatic sophistication, genetic analysis continues to be the gold standard for pathway assignments.

摘要

微小 RNA 是一类小的非编码 RNA,它们在生物学的各个方面都在转录后水平上调节基因表达。在 中,超过 140 个编码微小 RNA 的基因调节着发育、行为、代谢以及对生理和环境变化的反应。对微小 RNA 基因的遗传分析不断增强我们对微小 RNA 如何整合到更广泛的基因调控网络中以控制包括生长、细胞分裂、细胞命运决定、行为、寿命和应激反应在内的多种生物学过程的基本理解。由于这些微小 RNA 序列及其相关的加工机制在近 10 亿年的动物系统发育中是保守的,因此通过线虫遗传学来确定它们的功能可以为它们在其他动物(包括人类)中的同源物的功能提供信息。针对微小 RNA 的研究尤其重要,因为使用 mRNA 靶标预测程序推断它们的功能很容易将微小 RNA 分配到错误的遗传途径中。在这种微小 RNA 生物信息学的中间复杂程度上,遗传分析仍然是途径分配的金标准。

相似文献

1
Recent Molecular Genetic Explorations of MicroRNAs.
Genetics. 2018 Jul;209(3):651-673. doi: 10.1534/genetics.118.300291.
2
GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis.
PLoS Genet. 2016 Dec 9;12(12):e1006484. doi: 10.1371/journal.pgen.1006484. eCollection 2016 Dec.
3
Roles of microRNAs in the Caenorhabditis elegans nervous system.
J Genet Genomics. 2013 Sep 20;40(9):445-52. doi: 10.1016/j.jgg.2013.07.002. Epub 2013 Aug 7.
4
The microRNA machinery regulates fasting-induced changes in gene expression and longevity in .
J Biol Chem. 2017 Jul 7;292(27):11300-11309. doi: 10.1074/jbc.M116.765065. Epub 2017 May 15.
5
HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development.
PLoS Genet. 2019 Oct 4;15(10):e1008067. doi: 10.1371/journal.pgen.1008067. eCollection 2019 Oct.
8
Control of developmental timing by micrornas and their targets.
Annu Rev Cell Dev Biol. 2002;18:495-513. doi: 10.1146/annurev.cellbio.18.012502.105832. Epub 2002 Apr 2.
9
Caenorhabditis elegans ALG-1 antimorphic mutations uncover functions for Argonaute in microRNA guide strand selection and passenger strand disposal.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5271-80. doi: 10.1073/pnas.1506576112. Epub 2015 Sep 8.
10
LIN-42, the Caenorhabditis elegans PERIOD homolog, negatively regulates microRNA transcription.
PLoS Genet. 2014 Jul 17;10(7):e1004486. doi: 10.1371/journal.pgen.1004486. eCollection 2014 Jul.

引用本文的文献

1
Insights into the evolution and regulation of miRNAs from the view of their DNA replication temporal domains.
Front Genet. 2025 Jun 23;16:1544802. doi: 10.3389/fgene.2025.1544802. eCollection 2025.
2
miR-137 targets Myc to regulate growth during eye development.
Development. 2025 Jul 15;152(14). doi: 10.1242/dev.204373. Epub 2025 Jul 16.
4
miRNA Expression Response of (Linnaeus 1762) (Diptera: Culicidae) to Imidacloprid Exposure.
Insects. 2025 Apr 27;16(5):460. doi: 10.3390/insects16050460.
5
7
Spatiotemporal single-cell architecture of gene expression in the Caenorhabditis elegans germ cells.
Cell Discov. 2025 Mar 18;11(1):26. doi: 10.1038/s41421-025-00790-4.
9
Development and Biomedical Application of Non-Noble Metal Nanomaterials in SERS.
Nanomaterials (Basel). 2024 Oct 15;14(20):1654. doi: 10.3390/nano14201654.
10
Evolutionary changes of noncoding elements associated with transition of sexual mode in nematodes.
Sci Adv. 2024 Sep 13;10(37):eadn9913. doi: 10.1126/sciadv.adn9913.

本文引用的文献

1
MicroRNA Regulation of nAChR Expression and Nicotine-Dependent Behavior in C. elegans.
Cell Rep. 2017 Nov 7;21(6):1434-1441. doi: 10.1016/j.celrep.2017.10.043.
2
mir-67 regulates P. aeruginosa avoidance behavior in C. elegans.
Biochem Biophys Res Commun. 2017 Dec 9;494(1-2):120-125. doi: 10.1016/j.bbrc.2017.10.069. Epub 2017 Oct 16.
4
A microRNA family exerts maternal control on sex determination in .
Genes Dev. 2017 Feb 15;31(4):422-437. doi: 10.1101/gad.290155.116. Epub 2017 Mar 9.
5
TEG-1 CD2BP2 controls miRNA levels by regulating miRISC stability in C. elegans and human cells.
Nucleic Acids Res. 2017 Feb 17;45(3):1488-1500. doi: 10.1093/nar/gkw836.
6
miRNAs cooperate in apoptosis regulation during development.
Genes Dev. 2017 Jan 15;31(2):209-222. doi: 10.1101/gad.288555.116. Epub 2017 Feb 6.
7
Molecular Control of Innate Immune Response to Pseudomonas aeruginosa Infection by Intestinal let-7 in Caenorhabditis elegans.
PLoS Pathog. 2017 Jan 17;13(1):e1006152. doi: 10.1371/journal.ppat.1006152. eCollection 2017 Jan.
8
is repressed by family in .
Worm. 2016 Sep 21;5(4):e1238560. doi: 10.1080/21624054.2016.1238560. eCollection 2016.
9
Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis.
Elife. 2016 Dec 12;5:e22750. doi: 10.7554/eLife.22750.
10
GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis.
PLoS Genet. 2016 Dec 9;12(12):e1006484. doi: 10.1371/journal.pgen.1006484. eCollection 2016 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验