Suppr超能文献

原虫寄生虫弓形虫有选择地重编程宿主细胞翻译组。

The Protozoan Parasite Toxoplasma gondii Selectively Reprograms the Host Cell Translatome.

机构信息

Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Quebec, Canada.

Centre for Host-Parasite Interactions, Institut National de la Recherche Scientifique-Institut Armand Frappier, Laval, Quebec, Canada.

出版信息

Infect Immun. 2018 Aug 22;86(9). doi: 10.1128/IAI.00244-18. Print 2018 Sep.

Abstract

The intracellular parasite promotes infection by targeting multiple host cell processes; however, whether it modulates mRNA translation is currently unknown. Here, we show that infection of primary murine macrophages with type I or II strains causes a profound perturbation of the host cell translatome. Notably, translation of transcripts encoding proteins involved in metabolic activity and components of the translation machinery was activated upon infection. In contrast, the translational efficiency of mRNAs related to immune cell activation and cytoskeleton/cytoplasm organization was largely suppressed. Mechanistically, bolstered mechanistic target of rapamycin (mTOR) signaling to selectively activate the translation of mTOR-sensitive mRNAs, including those with a 5'-terminal oligopyrimidine (5' TOP) motif and those encoding mitochondrion-related proteins. Consistent with parasite modulation of host mTOR-sensitive translation to promote infection, inhibition of mTOR activity suppressed replication. Thus, selective reprogramming of host mRNA translation represents an important subversion strategy during infection.

摘要

细胞内寄生虫通过靶向多个宿主细胞过程来促进感染;然而,目前尚不清楚它是否调节 mRNA 翻译。在这里,我们表明,I 型或 II 型菌株感染原代小鼠巨噬细胞会严重扰乱宿主细胞的转译组。值得注意的是,感染后编码参与代谢活动的蛋白质和翻译机制组件的转录本的翻译被激活。相比之下,与免疫细胞激活和细胞骨架/细胞质组织相关的 mRNA 的翻译效率则被大大抑制。从机制上讲,增强了雷帕霉素(mTOR)信号的机械靶点,以选择性地激活 mTOR 敏感的 mRNA 的翻译,包括那些具有 5'末端寡嘧啶(5' TOP)基序和那些编码与线粒体相关的蛋白质的 mRNA。与寄生虫调节宿主 mTOR 敏感的翻译以促进感染一致,抑制 mTOR 活性会抑制 复制。因此,宿主 mRNA 翻译的选择性重编程是 感染过程中的一个重要颠覆策略。

相似文献

1
The Protozoan Parasite Toxoplasma gondii Selectively Reprograms the Host Cell Translatome.
Infect Immun. 2018 Aug 22;86(9). doi: 10.1128/IAI.00244-18. Print 2018 Sep.
3
Z-DNA Binding Protein Mediates Host Control of Toxoplasma gondii Infection.
Infect Immun. 2016 Sep 19;84(10):3063-70. doi: 10.1128/IAI.00511-16. Print 2016 Oct.
5
Transcriptomic analysis reveals Toxoplasma gondii strain-specific differences in host cell response to dense granule protein GRA15.
Parasitol Res. 2018 Sep;117(9):2785-2793. doi: 10.1007/s00436-018-5966-8. Epub 2018 Jun 19.
6
Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii.
mSphere. 2019 Jun 5;4(3):e00292-19. doi: 10.1128/mSphere.00292-19.
7
Modulated Gene Expression of Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway.
Korean J Parasitol. 2018 Apr;56(2):135-145. doi: 10.3347/kjp.2018.56.2.135. Epub 2018 Apr 30.
8
Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages.
Int J Parasitol. 2015 Apr;45(5):319-32. doi: 10.1016/j.ijpara.2015.01.003. Epub 2015 Feb 24.
9
Infection by the Protozoan Parasite Inhibits Host MNK1/2-eIF4E Axis to Promote Its Survival.
Front Cell Infect Microbiol. 2020 Sep 9;10:488. doi: 10.3389/fcimb.2020.00488. eCollection 2020.
10
Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages.
PLoS One. 2015 Jul 20;10(7):e0133502. doi: 10.1371/journal.pone.0133502. eCollection 2015.

引用本文的文献

1
infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6 cells.
Infect Immun. 2024 Nov 12;92(11):e0030924. doi: 10.1128/iai.00309-24. Epub 2024 Oct 22.
2
Molecular diagnosis of human toxoplasmosis: the state of the art.
J Parasit Dis. 2024 Jun;48(2):201-216. doi: 10.1007/s12639-024-01667-1. Epub 2024 Apr 29.
3
Leishmania donovani Exploits Tunneling Nanotubes for Dissemination and Propagation of B Cell Activation.
Microbiol Spectr. 2023 Aug 17;11(4):e0509622. doi: 10.1128/spectrum.05096-22. Epub 2023 Jul 5.
5
Ribosome Specialization in Protozoa Parasites.
Int J Mol Sci. 2023 Apr 19;24(8):7484. doi: 10.3390/ijms24087484.
10
Editorial: Early Events During Host Cell-Pathogen Interaction.
Front Cell Infect Microbiol. 2021 May 19;11:680557. doi: 10.3389/fcimb.2021.680557. eCollection 2021.

本文引用的文献

1
Toxoplasma gondii infection induces the formation of host's nuclear granules containing poly(A)-binding proteins.
Can J Microbiol. 2018 Aug;64(8):551-558. doi: 10.1139/cjm-2017-0755. Epub 2018 Apr 15.
2
Infection Is Associated with Mitochondrial Dysfunction .
Front Cell Infect Microbiol. 2017 Dec 12;7:512. doi: 10.3389/fcimb.2017.00512. eCollection 2017.
3
4
Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death.
Curr Opin Microbiol. 2017 Dec;40:72-80. doi: 10.1016/j.mib.2017.10.021. Epub 2017 Nov 12.
5
RNA Binding Protein Regulation and Cross-Talk in the Control of AU-rich mRNA Fate.
Front Mol Biosci. 2017 Oct 23;4:71. doi: 10.3389/fmolb.2017.00071. eCollection 2017.
6
How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth.
Curr Opin Microbiol. 2017 Dec;40:32-39. doi: 10.1016/j.mib.2017.10.009. Epub 2017 Nov 3.
7
Posttranscriptional control of airway inflammation.
Wiley Interdiscip Rev RNA. 2018 Jan;9(1). doi: 10.1002/wrna.1455. Epub 2017 Oct 26.
8
Translational Control in the Latency of Apicomplexan Parasites.
Trends Parasitol. 2017 Dec;33(12):947-960. doi: 10.1016/j.pt.2017.08.006. Epub 2017 Sep 20.
9
mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1.
Mol Cell. 2017 Sep 21;67(6):922-935.e5. doi: 10.1016/j.molcel.2017.08.013. Epub 2017 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验