Suppr超能文献

组蛋白伴侣 ASF1 对于裂殖酵母 fbp1 基因沉默中抑制性染色质的形成是必需的。

Histone Chaperone Asf1 Is Required for the Establishment of Repressive Chromatin in Schizosaccharomyces pombe fbp1 Gene Repression.

机构信息

Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan.

Department of Life Sciences, The University of Tokyo, Tokyo, Japan.

出版信息

Mol Cell Biol. 2018 Aug 28;38(18). doi: 10.1128/MCB.00194-18. Print 2018 Sep 15.

Abstract

The arrangement of nucleosomes in chromatin plays a role in transcriptional regulation by restricting the accessibility of transcription factors and RNA polymerase II to -acting elements and promoters. For gene activation, the chromatin structure is altered to an open configuration. The mechanism for this process has been extensively analyzed. However, the mechanism by which repressive chromatin is reconstituted to terminate transcription has not been fully elucidated. Here, we investigated the mechanisms by which chromatin is reconstituted in the fission yeast gene, which is robustly induced upon glucose starvation but tightly repressed under glucose-rich conditions. We found that the chromatin structure in the region upstream from is closed by a two-step process. When cells are returned to glucose-rich medium following glucose starvation, changes in the nucleosome pattern alter the chromatin configuration at the transcription factor binding site to an inaccessible state, after which the nucleosome density upstream from gradually increases via histone loading. Interestingly, this histone loading was observed in the absence of the Tup family corepressors Tup11 and Tup12. Analysis of strains carrying either gene disruptions or mutations affecting nine fission yeast histone chaperone genes demonstrated that the histone chaperone Asf1 induces nucleosome loading during glucose repression. These data establish a previously unappreciated chromatin reconstitution mechanism in repression.

摘要

染色质中核小体的排列在转录调控中发挥作用,通过限制转录因子和 RNA 聚合酶 II 与作用元件和启动子的可及性。为了基因激活,染色质结构被改变为开放构象。这个过程的机制已经被广泛分析。然而,抑制性染色质重新构成以终止转录的机制尚未完全阐明。在这里,我们研究了裂殖酵母基因中染色质重新构成的机制,该基因在葡萄糖饥饿时强烈诱导,但在葡萄糖丰富的条件下被严格抑制。我们发现, 基因上游区域的染色质结构通过两步过程关闭。当细胞在葡萄糖饥饿后返回葡萄糖丰富的培养基时,核小体模式的变化将转录因子结合位点的染色质构型改变为不可接近状态,之后 基因上游的核小体密度通过组蛋白加载逐渐增加。有趣的是,这种组蛋白加载在没有 Tup 家族核心抑制因子 Tup11 和 Tup12 的情况下观察到。对携带基因缺失或影响九个裂殖酵母组蛋白伴侣基因的突变的菌株进行分析表明,组蛋白伴侣 Asf1 在葡萄糖抑制期间诱导核小体加载。这些数据确立了在 基因抑制中以前未被认识的染色质重新构成机制。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验