Suppr超能文献

一种基于网格的薛定谔方程变分求解方法:基态原子能量的q指数及近哈特里-福克结果

A grid-based variational method to the solution of the Schrödinger equation: the q-exponential and the near Hartree-Fock results for the ground state atomic energies.

作者信息

Custodio Rogério, de Souza Tavares de Morais Guilherme, Rodrigues Maurício Gustavo

机构信息

Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, Mail Box 6154, Campinas, São Paulo, 13083-970, Brazil.

Instituto Federal Catarinense - Campus Camboriú, Camboriú, Santa Catarina, 88340-000, Brazil.

出版信息

J Mol Model. 2018 Jul 2;24(7):188. doi: 10.1007/s00894-018-3715-7.

Abstract

A grid-based variational method was proposed and applied to the ground state energies of atoms from the first to the third period of the periodic table. The nonuniform grid in the radial coordinate was defined by a q-exponential sequence. Some unusual properties between the optimum q-parameters and the electronic energies or atomic numbers are described. The behavior of the electronic energy, with respect to the q-parameter, yields near Hartree-Fock accuracy with a relatively small number of integration points. A simple relationship between the optimum q-parameters and the atomic numbers was found, which allowed the determination of the optimum q-parameters for atoms of the same period from two results. The remarkable results provide a simple alternative route to reach accurate results. The consistent results also suggest that this is not a random or accidental effect, but some optimum condition achieved by using a q-exponential mesh grid. Graphical abstract The q-exponential and the near Hartree-Fock results for the ground state atomic energies.

摘要

提出了一种基于网格的变分方法,并将其应用于元素周期表中第一至第三周期原子的基态能量计算。径向坐标中的非均匀网格由q指数序列定义。描述了最优q参数与电子能量或原子序数之间的一些不寻常性质。电子能量相对于q参数的行为,在积分点数相对较少的情况下,能达到接近哈特里-福克精度。发现了最优q参数与原子序数之间的简单关系,这使得可以根据两个结果确定同一周期原子的最优q参数。这些显著结果提供了一条获得精确结果的简单替代途径。一致的结果还表明,这不是一个随机或偶然的效应,而是通过使用q指数网格实现的某种最优条件。图形摘要 基态原子能量的q指数和接近哈特里-福克的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验